- PROBLEM 1 Find the general solution and draw the phase portrait for the following linear systems:
 - (a) $\dot{x}_1 = x_1$, $\dot{x}_2 = x_2$,
 - (b) $\dot{x}_1 = x_1$, $\dot{x}_2 = 2x_2$,
 - (c) $\dot{x}_1 = x_1$, $\dot{x}_2 = 3x_2$,
 - (d) $\dot{x}_1 = -x_2$, $\dot{x}_2 = x_1$ (*Hint: note that* $x_1^2 + x_2^2 = constant$ on the solution curves),
 - (e) $\dot{x}_1 = -x_1 + x_2$, $\dot{x}_2 = -x_2$.
- PROBLEM 2 Find the general solution and draw the phase portraits for the following three-dimensional linear systems:
 - (a) $\dot{x}_1 = x_1$, $\dot{x}_2 = x_2$, $\dot{x}_3 = x_3$, (b) $\dot{x}_1 = -x_1$, $\dot{x}_2 = -x_2$, $\dot{x}_3 = x_3$, (c) $\dot{x}_1 = -x_2$, $\dot{x}_2 = x_1$, $\dot{x}_3 = x_3$.

Hint: In (c), show that the solution curves lie on right circular cylinders perpendicular to the x_1, x_2 plane. Identify the stable and unstable subspaces in (a) and (b). The x_3 -axis is the stable subspace in (c) and the x_1, x_2 plane is called the center subspace in (c).

PROBLEM 3 Find the general solution of the linear system

$$\dot{x}_1 = x_1, \qquad \dot{x}_2 = ax_2$$

where *a* is a constant. Sketch the phase portraits for a = -1, a = 0 and a = 1 and notice that the qualitative structure of the phase portrait is the same for all a < 0 as well as for all a > 0, but that it changes at the parameter value a = 0 called *a bifurcation value*.

- PROBLEM 4 Find the general solution of the linear system $\dot{x} = Ax$ when A is the $n \times n$ diagonal matrix $A = \text{diag}[\lambda_1, \lambda_2, \dots, \lambda_n]$. What condition on the eigenvalues $\lambda_1, \dots, \lambda_n$ will guarantee that $\lim_{t\to\infty} x(t) = 0$ for all solutions x(t) of this system?
- PROBLEM 5 What is the relationship between the vector fields defined by

$$\dot{x} = Ax$$
 and $\dot{x} = kAx$

where k is a non-zero constant? (Describe this relationship both for k positive and k negative.)

- PROBLEM 6 (a) If u(t) and v(t) are solutions of the linear system $\dot{x} = Ax$, prove that for any constants a and b, w(t) = au(t) + bv(t) is a solution.
 - (b) For A = diag(1, -2) find solutions u(t) and v(t) of $\dot{x} = Ax$ such that every solution is a linear combination of u(t) and v(t).