• operator norm: $||T|| = \max_{|x|=1} |T(x)|$

 $\text{Properties:} \quad \|S+T\| \leqslant \|S\| + \|T\|, \quad \|ST\| \leqslant \|S\| \cdot \|T\|$

• exponential of operator: $e^T = \sum_{n \ge 0} T^n / n!$

PROPERTIES: $e^S \circ e^T = e^T \circ e^S$ if $S \circ T = T \circ S$, $e^{-T} = (e^T)^{-1}$, $||e^T|| \leq e^{||T||}$, $\frac{d}{dt}e^{At} = Ae^{At}$, $e^{\operatorname{diag}(\lambda_1,\ldots,\lambda_n)} = \operatorname{diag}(e^{\lambda_1},\ldots,e^{\lambda_n})$, $e^{PAP^{-1}} = Pe^AP^{-1}$.

• The Fundamental Theorem for Linear Systems

 $\dot{x} = Ax$, $x(0) = x_0$ has a unique solution given by $x(t) = e^{At}x_0$

PROBLEM 1 Find the general solution of the equations:

$$\begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix} x = \dot{x} \quad \text{and} \quad \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix} y = \dot{y}$$

using diagonalisation and draw the phase portrait.

- PROBLEM 2 Write the differential equation $\ddot{x} 2\ddot{x} \dot{x} + 2x = 0$ (where $x = x(t) : \mathbb{R} \to \mathbb{R}$) in the form of the system $Ay = \dot{y}$ and solve.
- Problem 3 Let the $n \times n$ matrix A have real, distinct eigenvalues. Find conditions on the eigenvalues that are necessary and sufficient for $\lim_{t\to\infty} x(t) = 0$, where x(t) is any solution of $\dot{x} = Ax$.
- PROBLEM 4 Compute the operator norm of the linear transformation defined by the matrix $A = \begin{bmatrix} 1 & 0 \\ 5 & 1 \end{bmatrix}$.
- PROBLEM 5 If *T* is a linear transformation on \mathbb{R}^n with ||T I|| < 1, prove that *T* is invertible and that the series $\sum_{k \ge 0} (I T)^k$ converges absolutely to T^{-1} . (*Hint: Use the geometric series.*)
- PROBLEM 6 Find e^{At} and solve the linear system $\dot{x} = Ax$ for A =

(a)
$$\begin{bmatrix} -1 & 0 \\ 0 & 2 \end{bmatrix}$$
 (b) $\begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix}$ (c) $\begin{bmatrix} 1 & 2 \\ 0 & -1 \end{bmatrix}$ (d) $\begin{bmatrix} 1 & 0 & 0 \\ 1 & 2 & 0 \\ 1 & 0 & -1 \end{bmatrix}$

Show that in general $e^{A+B} \neq e^A e^B$.

- PROBLEM 7 (a) Show that if x is an eigenvector of A corresponding to the eigenvalue λ , then x is also an eigenvector of e^A corresponding to the eigenvalue e^{λ} .
 - (b) Suppose that the square matrix *A* has a negative eigenvalue. Show that the linear system $\dot{x} = Ax$ has at least one nontrivial solution x(t) that satisfies $\lim_{t\to\infty} x(t) = 0$.
 - (c) Show that if A is diagonalisable then det $e^A = e^{\operatorname{tr} A}$.
- PROBLEM 8 Let T(x) = Ax be a linear transformation on \mathbb{R}^n that leaves a subspace $E \subset \mathbb{R}^n$ invariant (i.e., for all $x \in E$, $T(x) \in E$). Show that if x(t) is the solution of the initial value problem $\dot{x} = Ax$, $x(0) = x_0$ with $x_0 \in E$, then $x(t) \in E$ for all $t \in \mathbb{R}$.