## ELEMENTS OF APPLIED MATHEMATICS

- operator norm: $\|T\|=\max _{|x|=1}|T(x)|$

Properties: $\quad\|S+T\| \leqslant\|S\|+\|T\|, \quad\|S T\| \leqslant\|S\| \cdot\|T\|$

- exponential of operator: $e^{T}=\sum_{n \geqslant 0} T^{n} / n$ !

Properties: $e^{S} \circ e^{T}=e^{T} \circ e^{S}$ if $S \circ T=T \circ S, \quad e^{-T}=\left(e^{T}\right)^{-1}, \quad\left\|e^{T}\right\| \leqslant e^{\|T\|}, \quad \frac{d}{d t} e^{A t}=A e^{A t}$, $e^{\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)}=\operatorname{diag}\left(e^{\lambda_{1}}, \ldots, e^{\lambda_{n}}\right), \quad e^{P A P^{-1}}=P e^{A} P^{-1}$.

- The Fundamental Theorem for Linear Systems
$\dot{x}=A x, x(0)=x_{0}$ has a unique solution given by $x(t)=e^{A t} x_{0}$

Problem 1 Find the general solution of the equations:

$$
\left[\begin{array}{ll}
3 & 1 \\
1 & 3
\end{array}\right] x=\dot{x} \quad \text { and } \quad\left[\begin{array}{ll}
1 & 3 \\
3 & 1
\end{array}\right] y=\dot{y}
$$

using diagonalisation and draw the phase portrait.
Problem 2 Write the differential equation $\dddot{x}-2 \ddot{x}-\dot{x}+2 x=0$ (where $x=x(t): \mathbb{R} \rightarrow \mathbb{R}$ ) in the form of the system $A y=\dot{y}$ and solve.

Problem 3 Let the $n \times n$ matrix $A$ have real, distinct eigenvalues. Find conditions on the eigenvalues that are necessary and sufficient for $\lim _{t \rightarrow \infty} x(t)=0$, where $x(t)$ is any solution of $\dot{x}=A x$.
Рroblem 4 Compute the operator norm of the linear transformation defined by the matrix $A=\left[\begin{array}{ll}1 & 0 \\ 5 & 1\end{array}\right]$.
Problem 5 If $T$ is a linear transformation on $\mathbb{R}^{n}$ with $\|T-I\|<1$, prove that $T$ is invertible and that the series $\sum_{k \geqslant 0}(I-T)^{k}$ converges absolutely to $T^{-1}$. (Hint: Use the geometric series.)

Problem 6 Find $e^{A t}$ and solve the linear system $\dot{x}=A x$ for $A=$
(a) $\left[\begin{array}{cc}-1 & 0 \\ 0 & 2\end{array}\right]$
(b) $\left[\begin{array}{ll}3 & 1 \\ 1 & 3\end{array}\right]$
(c) $\left[\begin{array}{cc}1 & 2 \\ 0 & -1\end{array}\right]$
(d) $\left[\begin{array}{ccc}1 & 0 & 0 \\ 1 & 2 & 0 \\ 1 & 0 & -1\end{array}\right]$

Show that in general $e^{A+B} \neq e^{A} e^{B}$.
Problem 7 (a) Show that if $x$ is an eigenvector of $A$ corresponding to the eigenvalue $\lambda$, then $x$ is also an eigenvector of $e^{A}$ corresponding to the eigenvalue $e^{\lambda}$.
(b) Suppose that the square matrix $A$ has a negative eigenvalue. Show that the linear system $\dot{x}=A x$ has at least one nontrivial solution $x(t)$ that satisfies $\lim _{t \rightarrow \infty} x(t)=0$.
(c) Show that if $A$ is diagonalisable then $\operatorname{det} e^{A}=e^{\operatorname{tr} A}$.

Problem 8 Let $T(x)=A x$ be a linear transformation on $\mathbb{R}^{n}$ that leaves a subspace $E \subset \mathbb{R}^{n}$ invariant (i.e., for all $x \in E, T(x) \in E)$. Show that if $x(t)$ is the solution of the initial value problem $\dot{x}=A x$, $x(0)=x_{0}$ with $x_{0} \in E$, then $x(t) \in E$ for all $t \in \mathbb{R}$.

