- for any power series $f: \quad f\left(J_{k}(\lambda)\right)=\left[\begin{array}{ccccc}f(\lambda) & f^{\prime}(\lambda) & \frac{f^{\prime \prime}(\lambda)}{2} & \ldots & \frac{f^{(n-1)}(\lambda)}{(n-1)!} \\ 0 & f(\lambda) & f^{\prime}(\lambda) & \ldots & \frac{f^{(n-2)}(\lambda)}{(n-2)!} \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & 0 & f(\lambda) & f^{\prime}(\lambda) \\ 0 & 0 & 0 & 0 & f(\lambda)\end{array}\right]$
- $\mu_{k, \lambda}:=\operatorname{dim} \operatorname{ker}(A-\lambda I)^{k} \Rightarrow \#($ Jordan blocks corresponding to λ of size $\geqslant k)=\mu_{k}-\mu_{k-1}$,
- $($ minimal polynomial of $A)=\prod_{i=1}^{r}\left(x-\lambda_{i}\right)^{m_{i}} \Rightarrow m_{i}=$ size of largest Jordan block for λ_{i}.
- stability theory for the system $\dot{x}=A x$:
- stable subspace: $E^{s}:=\operatorname{Span}\{\Re(v), \Im(v): v$ is a gen. eigenvector for λ with $\Re(\lambda)<0\}$,
- unstable subspace: $E^{u}:=\operatorname{Span}\{\Re(v), \Im(v): v$ is a gen. eigenvector for λ with $\Re(\lambda)>0\}$,
- center subspace: $E^{c}:=\operatorname{Span}\{\Re(v), \Im(v): v$ is a gen. eigenvector for λ with $\Re(\lambda)=0\}$.

Problem 1 Prove the formula for $f\left(J_{k}(\lambda)\right)$.
(Hint: find $J_{k}(\lambda)^{m}$ by induction on m. If it's too hard, solve it for $k=2$.)
Problem 2 Find the Jordan canonical forms for the following matrices:
(a) $\left[\begin{array}{cccc}0 & -1 & -2 & -1 \\ 1 & 2 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1\end{array}\right]$
(b) $\left[\begin{array}{lll}5 & 1 & -4 \\ 4 & 3 & -5 \\ 3 & 1 & -2\end{array}\right]$
(c) $\left[\begin{array}{cccc}5 & 1 & 3 & 2 \\ 0 & 5 & 0 & -3 \\ 0 & 0 & 5 & 1 \\ 0 & 0 & 0 & 5\end{array}\right]$
(d) $\left[\begin{array}{cccc}0 & 1 & 0 & 0 \\ -1 & -2 & 0 & 0 \\ 0 & 0 & 3 & 1 \\ 0 & 0 & -1 & 5\end{array}\right]$
(e) $\left[\begin{array}{cccc}0 & -2 & -1 & -1 \\ 1 & 2 & 1 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$
(f) $\left[\begin{array}{cccc}3 & -1 & 1 & -7 \\ 9 & -3 & -7 & -1 \\ 0 & 0 & 4 & -8 \\ 0 & 0 & 4 & -4\end{array}\right]$
(g) $\left[\begin{array}{ccc}-2 & -1 & 0 \\ 1 & -2 & 0 \\ 0 & 0 & 3\end{array}\right]$

What is the solution of the initial value problem for them?
How to describe Stable, Unstable and Center Subspaces for those matrices?

1. Compute eigenvalues of the matrix A. Let λ be one of them.
2. Compute $B=A-\lambda I, B^{2}, \ldots$ and $\delta_{i}:=\operatorname{dim} \operatorname{ker} B^{i}$, until $\delta_{n}=\delta_{n+1}$.

It's also useful to find basis for ker B^{i} (relations between the columns).
3. Now you can draw the string diagram. The number of dots in the i-th row is $\delta_{i}-\delta_{i-1}$.

You can find the part of Jordan form corresponding to λ from the diagram. A column of length k represents a Jordan block of size k.

Each dot will correspond to a generalized eigenvector.
4. To find the vectors in the n-th row, complete in an arbitrary way basis of $\operatorname{ker} B^{n-1}$ to a basis of ker B^{n}.
5. Let's find the vectors in the i-th row:
(a) if a vector v lies in the middle of the chain above a vector w, then $v:=$ $B w$,
(b) to obtain the vectors that start the chain: complete in an arbitrary way basis of ker B^{i-1} and vectors obtained in (a) to a basis of ker B^{i}.
6. Repeat for other eigenvalues. The vectors from the diagrams form a basis of generalized eigenvectors.

