- 1. Draw phase diagram for the matrix $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$.
- 2. Using Jordan canonical form:

(a) Compute
$$\begin{bmatrix} 3 & 1 \\ -1 & 5 \end{bmatrix}^{30}$$
.
(b) Solve the equation $X^2 = \begin{bmatrix} 3 & 1 \\ -1 & 5 \end{bmatrix}$ in $M_2(\mathbb{C})$.

3. Prove that for any $A \in M_n(\mathbb{C})$ and $k \in \mathbb{Z}_+$ the equation $X^k = A$ has a solution.

(Hint: find the Jordan canonical form of $J_m(\lambda)^k$.)

4. Solve the system

$$\left[\begin{array}{rrrr} 0 & 2 & 0 \\ -2 & 0 & 0 \\ 2 & 0 & 6 \end{array}\right]$$

Find the stable, unstable and center subspaces for this system and sketch the phase portrait. For $x_0 \in E^c$, show that the sequence of points $x_n = e^{An}x_0 \in E^c$; similarly, for $x_0 \in E^s$ or E^u , show that $x_n \in E^s$ or E^u respectively.

- 5. Let *A* be an $n \times n$ nonsingular matrix and let x(t) be the solution of the initial value problem $\dot{x} = Ax$ with $x(0) = x_0 \in \mathbb{R}^n$. Show that if $x_0 \in E^s \setminus \{0\}$ then $\lim_{t\to\infty} x(t) = 0$ and $\lim_{t\to\infty} |x(t)| = \infty$.
- 6. Prove that for any power series f and any parameter $t \in \mathbb{C}$:

$$f(J_k(\lambda)t) = \begin{bmatrix} f(\lambda) & t \cdot f'(\lambda) & t^2 \cdot \frac{f''(\lambda)}{2} & \dots & t^{n-1} \cdot \frac{f^{(n-1)}(\lambda)}{(n-1)!} \\ 0 & f(\lambda) & t \cdot f'(\lambda) & \dots & t^{n-2} \cdot \frac{f^{(n-2)}(\lambda)}{(n-2)!} \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & 0 & f(\lambda) & t \cdot f'(\lambda) \\ 0 & 0 & 0 & 0 & f(\lambda) \end{bmatrix}.$$