ELEMENTS OF APPLIED MATHEMATICS

1. Draw phase diagram for the matrix $A=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1\end{array}\right]$.
2. Using Jordan canonical form:
(a) Compute $\left[\begin{array}{cc}3 & 1 \\ -1 & 5\end{array}\right]^{30}$.
(b) Solve the equation $X^{2}=\left[\begin{array}{cc}3 & 1 \\ -1 & 5\end{array}\right]$ in $M_{2}(\mathbb{C})$.
3. Prove that for any $A \in M_{n}(\mathbb{C})$ and $k \in \mathbb{Z}_{+}$the equation $X^{k}=A$ has a solution.
(Hint: find the Jordan canonical form of $J_{m}(\lambda)^{k}$.)
4. Solve the system

$$
\left[\begin{array}{ccc}
0 & 2 & 0 \\
-2 & 0 & 0 \\
2 & 0 & 6
\end{array}\right]
$$

Find the stable, unstable and center subspaces for this system and sketch the phase portrait. For $x_{0} \in E^{c}$, show that the sequence of points $x_{n}=e^{A n} x_{0} \in E^{c}$; similarly, for $x_{0} \in E^{s}$ or E^{u}, show that $x_{n} \in E^{s}$ or E^{u} respectively.
5. Let A be an $n \times n$ nonsingular matrix and let $x(t)$ be the solution of the initial value problem $\dot{x}=A x$ with $x(0)=x_{0} \in \mathbb{R}^{n}$. Show that if $x_{0} \in E^{s} \backslash\{0\}$ then $\lim _{t \rightarrow \infty} x(t)=0$ and $\lim _{t \rightarrow \infty}|x(t)|=\infty$.
6. Prove that for any power series f and any parameter $t \in \mathbb{C}$:

$$
f\left(J_{k}(\lambda) t\right)=\left[\begin{array}{ccccc}
f(\lambda) & t \cdot f^{\prime}(\lambda) & t^{2} \cdot \frac{f^{\prime \prime}(\lambda)}{2} & \ldots & t^{n-1} \cdot \frac{f^{(n-1)}(\lambda)}{(n-1)!} \\
0 & f(\lambda) & t \cdot f^{\prime}(\lambda) & \ldots & t^{n-2} \cdot \frac{f^{(n-2)}(\lambda)}{(n-2)!} \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
0 & 0 & 0 & f(\lambda) & t \cdot f^{\prime}(\lambda) \\
0 & 0 & 0 & 0 & f(\lambda)
\end{array}\right] .
$$

