1. Solve the nonhomogeneous linear system:

$$
\dot{x}(t)=\left[\begin{array}{cc}
1 & 1 \\
0 & -1
\end{array}\right] x(t)+\binom{t}{1}
$$

with the initial condition $x(0)=\binom{1}{0}$.
2. Show by the definition that the derivative of $f(x, y)=(x \cos y, x \sin y): \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ at $\left(0, \frac{\pi}{2}\right)$ is a linear transformation given by the matrix $\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right]$.

How can you compute this derivative directly?
3. (a) Show that the initial value problem $x: \mathbb{R} \rightarrow \mathbb{R}$,

$$
\begin{aligned}
\dot{x} & =|x|^{1 / 2} \\
x(0) & =0
\end{aligned}
$$

has four different solutions through the point $(0,0)$. Sketch these solutions in the (t, x)-plane.
(b) Show that $f(x)=|x|^{1 / 2}$ does not satisfy the Lipchitz condition in any interval $[-a, a]$, $a>0$.
4. Let $f \in C^{1}(E)$ and $x_{0} \in E$.
(a) Show that there are positive constants ε and K_{0} such that

$$
\forall_{x, y \in N_{\varepsilon}\left(x_{0}\right) \subset E}: \quad\|f(x)-f(y)\| \leqslant K_{0}\|x-y\| .
$$

Hint. Let $K:=\max _{\|x\| \leqslant \varepsilon / 2}\|D f(x)\|$. Consider the function $g(t)=f(x+t(y-x))$: $[0,1] \rightarrow \mathbb{R}^{n}$ and use the formula $g(t)=\int_{0}^{t} g^{\prime}(u) d u$.
(b) Show that $V_{a}=\left\{u \in C([-a, a]):\left\|u-x_{0}\right\| \leqslant \varepsilon\right\}$ is a complete space for any $a>0$.
(c) Consider the operator $T(u)(t)=x_{0}+\int_{0}^{t} f(u(s)) d s$.. Show that
(i) for all $u, v \in V_{a},\|T(u)-T(v)\| \leqslant a K_{0}\|u-v\|$
(ii) for sufficiently small $a, T: V_{a} \rightarrow V_{a}$.
(d) Show (using the contraction principle), that the integral equation

$$
u(t)=x_{0}+\int_{0}^{t} f(u(t)) d t
$$

has a unique continuous solution $u(t)$ for all $t \in[-a, a]$ provided the constant $a>0$ is sufficiently small.

