ELEMENTS OF APPLIED MATHEMATICS

Problem set 7 - Nonlinear systems, pt. 2

- maximal interval of existence,
- flow defined by an equation $\dot{x} = f(x)$,
- equilibrium point of a non-linear system: $f(x_0) = 0$
 - hyperbolic all eigenvalues of $Df(x_0)$ have non-zero real part,
 - sink all eigenvalues of $Df(x_0)$ have negative real part,
 - source all eigenvalues of $Df(x_0)$ have positive real part,
 - saddle there is at least one eigenvalue of $Df(x_0)$ with positive real part and one with negative.
- Stable Manifold Theorem: 0 hyperbolic fixed point of $\dot{x} = f(x)$

Df(0) has k eigenvalues with negative and n-k eigenvalues with positive real part

 \Rightarrow there exists a *k* - dimensional differential manifold *S* (*local stable mani-fold*) such that:

- 1. *S* is tangent to the stable subspace of $\dot{x} = Df(0)x$, x(0) = 0 at 0,
- 2. $\phi_t(S) \subset S$ for $t \ge 0$,
- 3. for all $x_0 \in S$: $\lim_{t\to\infty} \phi_t(x_0) = 0$.
- global stable manifold: $W^s(0) := \bigcup_{t \leq 0} \phi_t(S)$.
- 1. Find the maximal interval of existence (α, β) for the following initial value problems and if $a > -\infty$ or $b < \infty$ discuss the limit of the solution as $t \to \alpha^+$ or as $t \to \beta^-$ respectively:

(a)
$$\dot{x} = x^2$$
, $x(0) = x_0$,
(b) $\dot{x} = \sec(x)$, $x(0) = x_0$,
(c) $\dot{x} = x^2 - 4$, $x(0) = 0$,
(d) $\dot{x}_1 = \frac{1}{2x_1}$, $x_1(0) = 1$, $\dot{x}_2 = x_1$, $x_2(0) = 1$.

2. Let $f \in C^1(E)$ where E is an open set in \mathbb{R}^n containing the point x_0 and let x(t) be the solution of the initial value problem $\dot{x}(t) = f(x(t))$ on its maximal interval of existence (α, β) . Prove that if $\beta < \infty$ and if the arclength of the half-trajectory $\Gamma_+ = \{x \in \mathbb{R}^n : x = x(t), 0 \leq t < \beta\}$ is finite, then it follows that the limit

$$x_1 = \lim_{t \to \beta^-} x(t)$$

exists (note that then by Corollary 2.4.1 of Perko, $x_1 \in \dot{E}$).

Hint: Assume that the above limit does not exist. This implies that there is a sequence t_n converging to β from the left such that $x(t_n)$ is not Cauchy. Use this fact to show that the arc-length of Γ_+ is then unbounded.

3. Determine the flow $\phi_t : \mathbb{R}^2 \to \mathbb{R}^2$ for the nonlinear system $\dot{x} = f(x)$ with

$$f(x) = \left[\begin{array}{c} -x_1\\2x_2 + x_1^2 \end{array}\right]$$

and show that the set $S = \{x \in \mathbb{R}^2 : x_2 = -x_1^2/4\}$ is invariant with respect to the flow ϕ_t .

4. Classify the equilibrium points (as sinks, sources or saddles) of the nonlinear system $\dot{x} = f(x)$ with f(x) given by

$$\begin{bmatrix} x_2 - x_1 \\ kx_1 - x_2 - x_1x_3 \\ x_1x_2 - x_3 \end{bmatrix}$$

(where k is a parameter).

5. Solve the system

$$\dot{x_1} = -x_1, \qquad \dot{x_2} = x_2 + x_1^2$$

and show that S and U are given by

 $S: x_2 = -x_1^2/3$, and $U: x_1 = 0$

Sketch S, U, E^s and E^u .