Beauville - Complex algebraic surfaces. Solutions

Jedrzej Garnek

8 czerwca 2020

Part of solutions is "stolen" from Fumiaki Suzuki's "Solutions Of Exercises In Complex Algebraic Surfaces".

II Birational maps

II (1) Let P be a point of multiplicity m on C. Let $\varepsilon: \widetilde{S} \rightarrow S$ be the blow-up at P. Then $\widetilde{C}=\varepsilon^{*} C-m E$ and thus by genus formula:

$$
\begin{aligned}
p_{a r}(\widetilde{C}) & =1+\frac{1}{2} \widetilde{C} \cdot\left(\widetilde{C}+K_{\tilde{S}}\right) \\
& =1+\frac{1}{2}\left(\varepsilon^{*} C-m E\right) \cdot\left(\varepsilon^{*} C-m E+\varepsilon^{*} K_{S}+E\right) \\
& =1+\frac{1}{2}\left(C^{2}+K_{S} \cdot C-m^{2}+m\right) \\
& =p_{a r}(C)-\frac{1}{2} m \cdot(m-1) .
\end{aligned}
$$

Thus blowing up strictly decreases the arithmetic genus and after finitely many steps our curve will be smooth.
II (2) (a) - ad. equality $m=\widehat{C} \cdot E$:
$\widehat{C}=\pi^{*} C-m$. Thus $m . \widehat{C}=E \cdot \pi^{*} C-m E^{2}=m$.

- ad. inequality $m_{x}(\hat{C} \cap E) \geqslant m_{x}(\hat{C})$:
let f, g be the local equations of \widehat{C} and E at x. Let $M=m_{x}(\widehat{C} \cap E)$; then $f \in \mathfrak{m}_{x}^{M}$. In particular, $(f, g) \subset \mathfrak{m}_{x}^{M}$ and:

$$
m_{x}(\widehat{C} \cap E)=\operatorname{dim}_{k} \mathcal{O}_{\widehat{S}, x} /(f, g) \geqslant \operatorname{dim}_{k} \mathcal{O}_{\widehat{S}, x} / \mathfrak{m}_{x}^{M}=M
$$

(b) Let r, s be the multiplicities of C and C^{\prime} at p, respectively. Recall that if π is a blow-up at $p, \pi^{*} C=\widetilde{C}+r E$, $\pi^{*} C^{\prime}=\widetilde{C}^{\prime}+s E$. Thus:

$$
\widetilde{C} \cdot \widetilde{C}^{\prime}=\left(\pi^{*} C-r E\right) \cdot\left(\pi^{*} C^{\prime}-s E\right)=\pi^{*} C \cdot \pi^{*} C^{\prime}-r \pi^{*} C \cdot E-s E \cdot \pi^{*} C^{\prime}+r s E \cdot E=C \cdot C^{\prime}-0-0+r s .
$$

Keep blowing up the surface at all intersection points of C and C^{\prime} over p until C and C^{\prime} do not meet transversally at all those points. Let $C_{n}:=\widetilde{C}_{n-1}, C_{n}^{\prime}:=\widetilde{C}_{n-1}^{\prime}$ be the images under those blow-ups. For $n \gg 0$, we will obtain that C_{n} and C_{n}^{\prime} will meet transversally at all points above p and C_{n}, C_{n}^{\prime} do not posses any multiple points above p. Thus $C_{n} \cdot C_{n}^{\prime}=\sum_{x} 1=\sum_{x} m_{x}\left(C_{n}\right) \cdot m_{x}\left(C_{n}^{\prime}\right)$ (where the sum is take over all $x \in C_{n} \cap C_{n}^{\prime}$ above p) and

$$
m_{p}\left(C \cap C^{\prime}\right)=\sum_{i} r_{i} s_{i}+C_{n} \cdot C_{n}^{\prime}=\sum_{p \in C \cap C^{\prime}} m_{p}(C) \cdot m_{p}\left(C^{\prime}\right)
$$

(the last sum including infinitely near points).
(c) Recall that in 2.1 we showed that after a blow-up with center in a point of multiplicity m we obtain a curve \widetilde{C} with arithemtic genus:

$$
p_{a r}(\widetilde{C})=p_{a r}(C)-\frac{1}{2} m \cdot(m-1)
$$

Thus after finitely many blow-ups we arrive at normalization N, whose genus satisfies:

$$
p_{a r}(N)=p_{a r}(C)-\sum_{i} \frac{1}{2} m_{i} \cdot\left(m_{i}-1\right)
$$

which ends the proof.

II (3) (a) By Corollary II. 12 (elimination of indeterminacy + universality property of blow-up) we have a diagram:

where f, g are compositions of blow-ups. By blowing up \widetilde{S} further at the non-smooth points of the strict transform of C, we can WLOG assume that \widetilde{C}, the strict transform of C on \widetilde{S}, is smooth. Then $g(\widetilde{C})$ is a point, and thus $\widetilde{C}^{2}=-1$ and $\widetilde{C} \cong \mathbb{P}^{1}$. Thus C is birational to \mathbb{P}^{1}. Moreover, it is straightforward that:

$$
\widetilde{C}=f^{*} C-\sum_{i} m_{i} E_{i}-\sum_{i=1}^{n} E_{i}^{\prime}
$$

where E_{i} are the exceptional divisors coming from blow-ups of singular points of C and E_{i}^{\prime} are the exceptional divisors coming from blow-ups of smooth points of C (possibly including infinitely near points), i.e.
$n=\#\{$ number of blow-ups in f, centered at smooth points of C (possibly including infinitely near points) $\}$. Thus $-1=\widetilde{C}^{2}=C^{2}-\sum_{i} m_{i}^{2}-n$. Moreover, if C is smooth, $n>0$ (since otherwise f would be an isomorphism and ϕ would be defined on whole C).
(b) Let $C^{2}=\sum_{i} m_{i}^{2}-1+n$ for $n \geqslant 0(n>0$ if C is smooth). Let $f: \widetilde{S} \rightarrow S$ be the blow-up of S at all singular points of C (including infinitely near points) and arbitrary n smooth points. Then \widetilde{C} is smooth, $\widetilde{C}=f^{*} C-\sum_{i} m_{i} E_{i}-\sum_{i=1}^{n} E_{i}^{\prime}$ and thus $\widetilde{C}^{2}=C^{2}-\sum_{i} m_{i}^{2}-n=-1$ and thus by Castelnuovo criterion there exists a morphism $g: \widetilde{S} \rightarrow S^{\prime}$ such that $g(\widetilde{C})$ is a point. Thus it suffices to take $\phi=g^{-1} \circ f$.

III Ruled surfaces

III (1) Recall that $F^{2}=0$ and $\widetilde{F}=\pi^{*} F-E$ (where $\pi: \widetilde{S} \rightarrow S$ is a blow-up of S on an arbitrary point of F). Thus $\widetilde{F}^{2}=F^{2}+E^{2}=F^{2}-1=-1$ and we can contract \widetilde{F} by the Castelnuovo criterion: $\widetilde{S} \rightarrow S^{\prime}$.

III (2)
Errata: a point of $s \in \mathbb{P}(E)$ over $x \in C$ corresponds to a morphism:

$$
E^{\vee} \rightarrow i_{x, *} \mathbb{C} \rightarrow 0 .
$$

E^{\prime} should be defined by the exact sequence:

$$
0 \rightarrow\left(E^{\prime}\right)^{\vee} \rightarrow E^{\vee} \rightarrow i_{x, *} \mathbb{C} \rightarrow 0
$$

Recall: here we define $\mathbb{P}(E):=\operatorname{Spec} \operatorname{Sym} E^{\vee}$, thus the points $s \in \mathbb{P}(E)$ over $x \in C$ correspond to:

- elements of $\mathbb{P}\left(E_{x} \otimes \kappa(x)\right)$,
- lines in the \mathbb{C}-vector space $E_{x} \otimes \kappa(x)$,
- morpshisms $E^{\vee} \rightarrow i_{x, *} \mathbb{C} \rightarrow 0$.

Note moreover that any morphism of vector bundles $f: E \rightarrow E^{\prime}$ induces a rational map $\mathbb{P}(f): \mathbb{P}(E) \rightarrow$ $\mathbb{P}\left(E^{\prime}\right)$ - it is well-defined out of the set:

$$
\left\{\left(x \in C, \xi \in \mathbb{P}\left(E_{x} \otimes \kappa(x)\right)\right): f(\xi)=0 \text { in } E_{x}^{\prime} \otimes \kappa(x)\right\}
$$

We start by proving that E^{\prime} is a rank 2 vector bundle. Note that $\left(E^{\prime}\right)^{\vee}$ is locally free as a subsheaf of a locally free sheaf. Moreover $\left(E^{\prime}\right)^{\vee} \cong E^{\vee}$ out of x and $0 \rightarrow\left(E^{\prime}\right)_{x}^{\vee} \rightarrow E_{x}^{\vee} \rightarrow \mathbb{C} \rightarrow 0$. If $\left(E^{\prime}\right)_{x}^{\vee}$ was a free \mathcal{O}_{x}-module of rank $\leqslant 1$, then the quotient would contain a copy of $\mathcal{O}_{x}-$ contradiction. Hence $\left(E^{\prime}\right)_{x}^{\vee}$ is of rank 2 and E is a vector bundle of rank 2 .

Let $h: E \rightarrow E^{\prime}$ be the dual of the inclusion $\left(E^{\prime}\right)^{\vee} \rightarrow E^{\vee}$. We'll show that:
(A) $\mathbb{P}(h)$ is an isomorphism out of $F:=p^{-1}(x)$,

Pf: By definition of $E^{\prime},\left.\left.E\right|_{U} \cong E^{\prime}\right|_{U}$, where $U:=\mathbb{P}(E) \backslash F$. Therefore $\mathbb{P}(h)$ is an isomorphism out of F.
(B) $\mathbb{P}(h): \mathbb{P}(E) \rightarrow \mathbb{P}\left(E^{\prime}\right)$ is defined out of s and contracts F to a point,

Pf: we only need to check it over x. Recall that $\mathbb{P}(h)$ is defined as

$$
\mathbb{P}\left(E_{x} \otimes \kappa(x)\right) \ni \xi \mapsto[h(\xi)] \in \mathbb{P}\left(E_{x}^{\prime} \otimes \kappa(x)\right)
$$

i.e. it is well defined on a line $\xi \in E_{x} \otimes \kappa(x)$, unless $\xi \subset \operatorname{ker}\left(h_{x} \otimes \kappa(x)\right)$. Recall that we have the exact sequence:

$$
\left(E^{\prime}\right)_{x}^{\vee} \otimes \kappa(x) \xrightarrow{h^{\vee}} E_{x}^{\vee} \otimes \kappa(x) \rightarrow \mathbb{C} \rightarrow 0
$$

or equivalently,

$$
0 \rightarrow \xi_{s} \rightarrow E_{x} \otimes \kappa(x) \rightarrow E_{x}^{\prime} \otimes \kappa(x)
$$

where ξ_{s} is the line corresponding to s. Note that thus the dimension of the image of

$$
I:=i m\left(E_{x} \otimes \kappa(x) \rightarrow E_{x}^{\prime} \otimes \kappa(x)\right)
$$

is one. Under h, every line in $E_{x} \otimes \kappa(x)$ goes either to 0 (if this line is ξ_{s}, i.e. if it is a point corresponding to s) or to I (if this line is not ξ_{s}). Thus $\mathbb{P}(h)$ is not defined at s and the image of $F \backslash\{s\}$ under h is the point $s^{\prime} \in S^{\prime}$ corresponding to the line:

$$
0 \rightarrow I \rightarrow E_{x}^{\prime} \otimes \kappa(x)
$$

(C) $\mathbb{P}\left(E^{\prime}\right)$ contains an "additional" rational line $p^{\prime-1}(x)$.

Pf: this is straightforward.
The properties $(A),(B),(C)$ show that $\mathbb{P}\left(E^{\prime}\right)=S$.
III (3) By Corollary II.12, we can present the map $\phi: X \rightarrow S$ as:

where $\tilde{X} \rightarrow X, X \rightarrow S$ are compositions of isomorphisms and blow-ups and $\widetilde{X} \rightarrow X$ is composed of $n=n(\phi)$ blow-ups. Let $\varepsilon: \widetilde{X} \rightarrow X^{\prime}$ be the last blow-up with the center P and exceptional divisor $E \subset \widetilde{X}$. Note that:

- the image of E in S is not a point - otherwise, the map $X^{\prime} \rightarrow X \rightarrow S$ and its inverse would have a single indeterminancy point, which would contradict Lemma II.10,
- the image of E in S (denoted also E) is a fiber of $S \rightarrow C$. Indeed, it is a rational curve and the only rational curves S contains, are the fibers (here we use the assumption $C \neq \mathbb{P}^{1}$).
- $\tilde{X} \rightarrow S$ must contain at least one blow-up on a point of (strict transform of) E_{S}. Indeed, otherwise E would have the same intersection number on \widetilde{X} (which is -1 , since it is an exceptional divisor of a blow-up) and on S (which is zero for any fiber).

Say that this blow-up was with center on $s \in E$ and that the exceptional divisor (or rather its strict transform with respect to the next blow-ups) is $F \subset \tilde{X}$.

Let \widetilde{S} be the blow-up of S at s and let $t: S \rightarrow S^{\prime}$ be the elementary transform of S at s. We want to show that we have the following diagram:

This will end the proof, since then

$$
n(\phi \circ t)=\#\left(\text { number of blow-ups in } X^{\prime} \rightarrow X\right)=n-1
$$

Note firstly, that since $\tilde{X} \rightarrow S$ contracts F, it must factor as $\widetilde{X} \rightarrow \widetilde{S} \rightarrow S$ (Proposition II.8). Now consider the birational map $\psi: X^{\prime} \rightarrow \widetilde{X} \rightarrow \widetilde{S} \rightarrow S^{\prime}$. Note that ψ is undefined at at most one point $-P$, the image of E. But there doesn't exist a curve $C \subset S^{\prime}$ such that $\psi^{-1}(C)=P$ (otherwise, the strict transform of this curve on \tilde{X} would be E, but E is contracted on S^{\prime}). Thus, by Lemma II.10, the map ψ is defined at P and we obtain a morphism $X^{\prime} \rightarrow S^{\prime}$. This ends the proof.

III (4) Note that $P G L(2, K)=\operatorname{Aut}\left(\mathbb{P}\left(E_{\xi}\right)\right)$, where ξ is the generic point of C. Thus, any $\varphi \in P G L(2, K)$ corresponds to $\varphi: \mathbb{P}\left(E_{\xi}\right) \rightarrow \mathbb{P}\left(E_{\xi}\right)$ and this may be extended to $\varphi: p^{-1}(U) \rightarrow p^{-1}(V)$ for some open sets $U, V \subset C$. Thus we obtain a map:

$$
P G L(2, K) \rightarrow \operatorname{Aut}_{b}(S)
$$

which is clearly injective. Choose a section $s: C \rightarrow S$. Then we have a map:

$$
\operatorname{Aut}_{b}(S) \rightarrow \operatorname{Aut}(C), \quad \Psi \mapsto p \circ \Psi \circ s
$$

(note that $p \circ \Psi \circ s$ is a birational map $C \rightarrow C$ which easily implies - since C is smooth and projective - that it extends to an automorphism $C \rightarrow C$). We want to show that $\phi:=p \circ \Psi \circ s$ satisfies $p \circ \Psi=\phi \circ p$ (cf. Remark III.16). This follows by $C \not \not \mathbb{P}^{1}$. Indeed, note that for any fiber $F, \Psi(F)$ is also a fiber, since it is isomorphic to \mathbb{P}^{1}, and S doesn't contain rational curves other than fibers (here we use $C \not \equiv \mathbb{P}^{1}$). Thus, since x and $s \circ p(x)$ lie in the same fiber, $\Psi(x)$ and $\Psi \circ s \circ p(x)$ lie also in the same fiber, i.e. $p \circ \Psi(x)=p \circ \Psi \circ s \circ p(x)$, i.e. $p \circ \Psi=\phi \circ p$. Moreover, $\Psi \in \operatorname{Aut}_{b}(C)$ maps to $i d \in \operatorname{Aut}(C)$ iff $p \circ \Psi=i d$. But then, after replacing C by an open subset U, we obtain the commutative diagram:

i.e. $\Psi \in \operatorname{PGl}(2, \mathcal{O}(U))$, i.e. Ψ comes from $\operatorname{PGl}(2, K)$.

Fix $\phi \in \operatorname{Aut}(C)$. Suppose that $V \subset C$ is an open set and $U=\varphi^{-1}(V)$ and that U, V are small enough so that $p^{-1}(U) \cong \mathbb{P}^{1} \times U, p^{-1}(V) \cong \mathbb{P}^{1} \times V$. Let

$$
\Psi:=(i d, \phi): p^{-1}(U) \cong \mathbb{P}^{1} \times U \rightarrow \mathbb{P}^{1} \times V \cong p^{-1}(V)
$$

- then $\Psi \in \operatorname{Aut}_{b}(S)$ and Ψ maps to ϕ. This proves the surjectivity and easily shows the splitting.

III (5)
Recall that a point $s \in S=\mathbb{P}(E)$ lying over $t \in C$ corresponds to a surjective morphism:

$$
\varphi: E^{\vee} \rightarrow i_{t, *} \mathbb{C} \rightarrow 0
$$

By ex. III (2) we want to compute $E^{\prime}=(\operatorname{ker} \varphi)^{\vee}$.
Suppose WLOG that s lies over $t=[0: 1] \in \mathbb{P}^{1}$. Note that any surjective morphism $\varphi: E^{\vee}=\mathcal{O} \oplus \mathcal{O}(-n) \rightarrow i_{t, *} \mathbb{C}$ is of the form $a \pi_{1}+b \pi_{2}$, where $(a, b) \in \mathbb{C}^{2} \backslash\{0\}$ and

$$
\begin{gathered}
\pi_{1}: \mathcal{O} \rightarrow i_{t, *} \mathcal{O}_{t} \rightarrow i_{t, *}\left(\mathcal{O}_{t} / \mathfrak{p}_{t}\right) \cong i_{t, *} \mathbb{C} \\
\pi_{2}: \mathcal{O}(-n) \rightarrow i_{t, *} \mathcal{O}(-n)_{t} \rightarrow i_{t, *}\left(\mathcal{O}(-n)_{t} / \mathfrak{p}_{t} \mathcal{O}(-n)\right) \cong i_{t, *} \mathbb{C} .
\end{gathered}
$$

Let φ correspond to (a, b). Note that for any quasicoherent sheaf $\mathcal{F} \rightarrow \widetilde{M}$ on $\operatorname{Proj} S$, the morphisms

$$
\mathcal{F} \rightarrow i_{x, *} \mathcal{F}_{x}, \quad \mathcal{F} \rightarrow i_{x, *}\left(\mathcal{F}_{x} / \mathfrak{p}_{x} \mathcal{F}_{x}\right)
$$

correspond to homomorphisms

$$
M \rightarrow M_{\mathfrak{p}}, \quad M \rightarrow M_{\mathfrak{p}} / \mathfrak{p} M_{\mathfrak{p}} \cong \operatorname{Frac}(M / \mathfrak{p})
$$

of graded S-modules (where x corresponds to an ideal \mathfrak{p} and $M_{\mathfrak{p}}$ denotes the homogeneous localisation, and Frac - the homogeneous fraction field).

In our case, $S=\mathbb{C}[x, y]$ and π_{1}, π_{2} come from homomorphisms

$$
S \rightarrow S / \mathfrak{p} \quad \text { and } \quad S(-n) \rightarrow S(-n) / \mathfrak{p}
$$

which we will also denote by π_{1}, π_{2} (where $\mathfrak{p}=(y)$). Note that we can identify $S(-n)$ with $y^{n} S$ or $x^{n} S$. Moreover:

$$
S(-n)_{\mathfrak{p}} / \mathfrak{p} S(-n)_{\mathfrak{p}}=x^{n} k[x, y]_{\mathfrak{p}} / y x^{n} k[x, y]_{\mathfrak{p}} \cong x^{n} k(x) \cong k(x) \cong k[x, y]_{\mathfrak{p}} / y k[x, y]_{\mathfrak{p}} \cong S_{\mathfrak{p}} / \mathfrak{p} S_{\mathfrak{p}}
$$

Thus φ is given by:

$$
\varphi\left(A(x, y), x^{n} B(x, y)\right)=A(x, 0)+x^{n} B(x, 0)=a A+b x^{n} B \quad(\bmod y) \in k(x)
$$

and $\operatorname{ker} \varphi=\widetilde{K}$, where:

$$
K=\left\{\left(A, x^{n} B\right) \in S \oplus x^{n} S: a A+b x^{n} B \equiv 0 \quad(\bmod y) .\right\}
$$

We consider the following three cases:
$1^{o} \quad a \neq 0, b=0$.
In this case clearly $K \cong y S \oplus x^{n} S \cong S(1) \oplus S(-n)$, i.e. $\widetilde{K}=\mathcal{O}(1) \oplus \mathcal{O}(-n)$, i. e. $E^{\prime}=\mathcal{O}(-1) \oplus \mathcal{O}(n)$, i.e.

$$
S^{\prime}=\mathbb{P}(\mathcal{O}(-1) \oplus \mathcal{O}(n)) \cong \mathbb{P}((\mathcal{O}(-1) \oplus \mathcal{O}(n)) \otimes \mathcal{O}(1))=\mathbb{P}(\mathcal{O} \oplus \mathcal{O}(n+1))=\mathbb{F}_{n+1}
$$

$2^{o} b \neq 0$.
In this case we have an isomorphism:

$$
\begin{aligned}
y S \oplus x^{n} S & \cong K \\
\left(y P, x^{n} Q\right) & \mapsto\left(\frac{1}{a} y P-\frac{b}{a} x^{n} Q, x^{n} Q\right)
\end{aligned}
$$

i.e. $E^{\prime} \cong \mathcal{O}(1) \oplus \mathcal{O}(n)$, i.e. $S^{\prime}=\mathbb{P}\left(E^{\prime}\right) \cong \mathbb{P}\left(E^{\prime} \otimes \mathcal{O}(-1)\right)=\mathbb{F}_{n-1}$.

Finally, we see that we have two cases:

- if s lies in the image of the section $\mathbb{P}^{1} \rightarrow \mathbb{F}_{n}$ coming from the surjection $\mathcal{O} \oplus \mathcal{O}(-n) \rightarrow \mathcal{O}$ (this section is denoted B in chapter IV), then $S^{\prime} \cong \mathbb{F}_{n+1}$,
- if $s \notin B$, then $S^{\prime} \cong \mathbb{F}_{n-1}$.

III (8)
(I guess that we want to classify ruled surfaces over C up to C-homeomorphism)
Lemma Let M be any compact oriented manifold of dimension 2 . Then:
(a) We have an isomorphism of groups:

$$
\text { deg : complex line bundles on } M \rightarrow \mathbb{Z}
$$

that coincides with the degree function for smooth projective algebraic curves over \mathbb{C}
(b) We have an isomorphism of groups:

$$
\operatorname{deg} \oplus \operatorname{dim}: \text { complex vector bundles on } M \rightarrow \mathbb{Z} \oplus \mathbb{Z}
$$

Thus the ring of vector bundles on M is isomorphic to $\mathbb{Z}[x] /\left(x^{2}\right)$.
Pf:
(a)

By the above lemma, any vector bundle over C is isomorphic (as a complex vector bundle) to $\mathcal{O} \oplus \mathcal{O}(n)$ for $n=\operatorname{deg} E$ or equivalently to $\mathcal{O}(m) \oplus \mathcal{O}(m+\varepsilon)$ for $n=2 m+\varepsilon, \varepsilon \in\{0,1\}$. We have: $\mathbb{P}(\mathcal{O}(m) \oplus \mathcal{O}(m+\varepsilon))$ is C-isomorphic to $\mathbb{P}((\mathcal{O}(m) \oplus \mathcal{O}(m+\varepsilon)) \otimes \mathcal{O}(-m))=\mathbb{P}(\mathcal{O} \oplus \mathcal{O}(\varepsilon))$. It suffices to show now that $\mathbb{P}(\mathcal{O} \oplus \mathcal{O}(\varepsilon))$ and $\mathbb{P}(\mathcal{O} \oplus \mathcal{O}(\varepsilon))$ are not C-homeomorphic. ?????
III (10) (solution stolen from Suzuki's solutions)
We'll start by showing that S must contain uncountably many lines.

Lemma Let $k=\bar{k}$ be an uncountable field, and let X be a k-variety. Let $\left(Z_{n}\right)_{n}$ be a countable family of proper closed subschemes of X. Then $\bigcup_{i} Z_{i}(k) \neq X(k)$.
Proof - I method: (MO 73743) by shrinking X, we can assume that it is affine. By Noether normalization lemma, there exists a finite surjective morphism $p: X \rightarrow \mathbb{A}_{k}^{m}$. Let $Y_{i}:=p\left(Z_{i}\right)$. Then $\mathbb{A}_{k}^{m}(k)=\bigcup_{i} Y_{i}(k)$. It suffices to show that this impossible by induction on m. For $m=1$ this is straightforward. Note that $\mathbb{A}_{k}^{m}(k)$ has uncountably many hyperplanes. Take a hyperplane H such that $\forall_{i} H \neq Y_{i}$. Then $\forall_{i} H \not \ddagger Y_{i}$ and thus $H=\bigcup_{i}\left(Y_{i} \cap H\right)(k)$ is a union of proper closed subvarieties. This is impossible by induction hypothesis.
Proof - II method: (only for $k=\mathbb{C}$) the proof follows by using Baire categories theorem, since a complete metric space (we can e.g. embedd X in \mathbb{P}^{n} to get a metrics) cannot be a countable union of nowhere dense sets.

We'll consider two cases:

- Case I: $q(S) \geqslant 1$

Let $A:=\operatorname{Alb}(S), j: S \rightarrow A$ and note that $\operatorname{dim} A=q(S) \geqslant 1$. Note that $\operatorname{Alb}\left(\mathbb{P}^{1}\right)=p t$, so all the rational lines on S are contracted to points. Thus, if $\operatorname{dim} j(S)=2$, then j would contract infinitely many curves to points. But this would contradict the following Lemma.

Lemma Let $f: S \rightarrow S^{\prime}$ be a surjective morphism of surfaces. Then f contract only finitely many lines. Proof: (cf. MSE, 3413803) By generic freeness, there is a closed subset Z such that for $s \in S^{\prime} \backslash Z$, $\operatorname{dim} f^{-1}(s)=\operatorname{dim} S-\operatorname{dim} S^{\prime}=0$. Note that $f^{-1}(Z)$ is a closed set of dimension $\leqslant 1$ and all of the contracted curves are contained in it. But $f^{-1}(Z)$ has finitely many irreducible components! This ends the proof.

Thus $\operatorname{dim} j(S)=1$. By generic smoothness (???) at least one of the fibers of j must be isomorphic to \mathbb{P}^{1} (???) and the proof follows by Noether-Enriques Theorem in this case.

- Case II: $q(S)=0$.

Let H be a very ample divisor. Consider for every $n \in \mathbb{N}$ the set $A_{n}:=\{C$ - rational curve : C. $H=$ $n\}$. Then, by Pigeonhole Principle, there exists $n \in \mathbb{N}$ such that A_{n} contains infinitely many curves. By [Hartshorne, AG, ex. ???] the set A_{n} modulo numerical equivalence is finite and thus there exist $C_{1}, C_{2} \in A_{n}$, $C_{1} \cong C_{2}$. Thus, $C_{1}^{2}=C_{1} \cdot C_{2} \geqslant 0$ (intersection product of two irreducible curves is the number of their intersection points, counted with multiplicities). But then we conclude that S is rational just as in the proof of Castelnuovo Theorem.

IV Rational surfaces

IV (1) - Step I: $P=|h|$ is n-dimensional, i.e. $h^{0}(\mathcal{O}(h))=n+1$.
Pf: note that $\mathcal{O}(h) \cong \mathcal{O}_{\mathbb{F}_{n}}(1)$ and thus $p_{*} \mathcal{O}(h)=\mathcal{E}=\mathcal{O} \oplus \mathcal{O}(n)$ and:

$$
h^{0}(\mathcal{O}(h))=h^{0}\left(\mathbb{P}^{1}, p_{*} \mathcal{O}(h)\right)=h^{0}\left(\mathbb{P}^{1}, \mathcal{O} \oplus \mathcal{O}(n)\right)=n+1
$$

- Step II: $|h|$ is very ample on $U:=\mathbb{F}_{n} \backslash B$

Step II A: $h^{1}(h-f)=0$
Pf: note that $(h-f) . f=1$ and thus by [Hartshorne, AG, Lemma V.2.4] $H^{1}(\mathcal{O}(h-f)) \cong H^{1}\left(\mathbb{P}^{1}, p_{*}(\mathcal{O}(h-\right.$ $f))$). But by projection formula:

$$
p_{*}(\mathcal{O}(h-f))=\left(\mathcal{O}_{\mathbb{P}^{1}} \oplus \mathcal{O}_{\mathbb{P}^{1}}(n)\right) \otimes \mathcal{O}_{\mathbb{P}^{1}}(-1)=\mathcal{O}_{\mathbb{P}^{1}}(-1) \oplus \mathcal{O}_{\mathbb{P}^{1}}(n-1)
$$

$\left(f\right.$ may defined as $p^{*}($ any point $\left.)\right)$. Thus $h^{1}(h-f)=h^{1}\left(\mathbb{P}^{1}, \mathcal{O}_{\mathbb{P}^{1}}(-1) \oplus \mathcal{O}_{\mathbb{P}^{1}}(n-1)\right)=0$. Cf. also Hartshorne, pf. Theorem V.2.17., Case IV.
Step II B: separating points $P \neq Q, P, Q \notin B$.

- if P, Q are not on one fiber, we can take $b+n f \in|h|$ for fiber f containing P, but not Q. Then $P \in b+n f, Q \notin b+n f$.
- suppose that P, Q are in one fiber f. Note that $h . f=1$ and thus the linear system $|h|$ restricted to $f \cong \mathbb{P}^{1}$ is very ample and we can find a divisor separating P and Q. But the restriction of $|h|$ to f, i.e. the map:

$$
H^{0}(\mathcal{O}(h)) \rightarrow H^{0}\left(\mathcal{O}(h) \otimes \mathcal{O}_{f}\right)
$$

is surjective. Indeed, the cokernel is $H^{1}(\mathcal{O}(h-f)$) (this follows from the exact sequence $0 \rightarrow \mathcal{O}(h-f) \rightarrow$ $\left.\mathcal{O}(h) \rightarrow \mathcal{O}(h) \otimes \mathcal{O}_{f} \rightarrow 0\right)$ and this is zero by Step II A.

- Step II C: separating a points $P \notin B$ and a tangent vector $v \in T_{P} \mathbb{F}_{n}$.
- let f be the fiber of P. If $v \notin T_{P} f$, then $b+n f \in|h|, P \in b+n f, v \notin T_{P}(b+n f)$.
- If $v \in T_{P} f$, we can repeat the reasoning from Step II B.
- Step III: $|h|$ is base point free,

Pf: since $|h|$ is very ample outside of B, we only have to check that for every $x \in B$ there exists $D \in|h|$ such that $x \notin D$. But we can take $D:=h$, since $h . b=0$.

- Step IV: the image of B via f is a single point p.

Pf: it suffices to show that the image of $|h-b| \rightarrow|h|, D \mapsto D+b$ is of codimension 1 in $|h|$. Indeed, then for any $x \in B$, the hypersurface

$$
f(x):=D \in|h| \text { that contain } x \in|h|^{\vee}
$$

must be $|h-b|$. We have: $|h-b|=|n f|$ and we are left with computing $h^{0}(n f)$. Using:

- the exact sequence $0 \rightarrow \mathcal{O}((m-1) f) \rightarrow \mathcal{O}(m f) \rightarrow \mathcal{O}_{f} \otimes \mathcal{O}(m) \rightarrow 0$ for $m \geqslant 0$,
$-H^{1}\left(\mathcal{O}_{\mathbb{P}^{1}}(t)\right)=0$ for $t<0$,
$-H^{1}\left(\mathcal{O}_{\mathbb{F}_{n}}\right)=q\left(\mathbb{F}_{n}\right)=0$,
one can show that $h^{1}(m f)=0$ for every $m \geqslant 0$ and that $h^{0}(m f)=m$. Thus $h^{0}(n f)=n$ and $|h-b|$ is indeed of codimension 1 in $|h|$.
- Step V: $|h|$ cut to the section h is the linear system $\mathcal{O}_{\mathbb{P}^{1}}(n)$ on \mathbb{P}^{1}. Thus the image of h by f is the line \mathbb{P}^{1} embedded via Veronese embedding.
Pf: indeed, the degree of the divisor h cut to the section h is $h . h=n$.
- Step VI: $|h|$ cut to any fiber is the linear system $\mathcal{O}_{\mathbb{P}^{1}}(n)$ on \mathbb{P}^{1}. Thus the image of any fiber is a line through p.

Pf: indeed, the degree of the divisor h cut to f is $h . f=1$.

- Summary: f is well defined, an embedding out of B, contracts B to one point, $f(h)$ is \mathbb{P}^{1} embedded via Veronese embedding and the image of any fiber is a line through p. Therefore $f\left(\mathbb{F}_{n}\right)$ must be a cone over $f(h)$.

IV (3) Choose any $n-1$ distinct points on S and let H be the hypersurface containing them. Then by Bezout theorem $H \cap S \leqslant \operatorname{deg} S \cdot \operatorname{deg} H=(n-2)$ or $S \subset H$. We clearly see that only the second possibility can hold.

V Castelnuovo's Theorem

V (1) Note that for any $n,-n K$ is ample and thus $H^{0}(n K)=0$ for every $n \geqslant 0$ (trivial case of Kodaira vanishing). Thus $P_{n}=0$ for every n and S is rational by Castelnuovo theorem. Let $S_{\text {min }}$ be the minimal model of S. Then $S_{\text {min }}=\mathbb{P}^{2}$ or $S_{\text {min }}=\mathbb{F}_{n}$ for $n \neq 1$. Note that $g: S \rightarrow S_{\text {min }}$ is composition of r blow ups for some r, with exceptional divisors E_{1}, \ldots, E_{r}. Then $K_{S}=g^{*} K_{S_{m i n}}+\sum_{i} E_{i}$. Suppose to the contrary that $S_{\text {min }}=\mathbb{F}_{n}$ for $n \geqslant 2$. Then $K_{S_{\text {min }}}=-2 h+(n-2) f$. Consider \hat{B}, the strict transform of $B \sim h-n f$. Note that $\widehat{B} \sim g^{*} h-g^{*} n f-\sum_{i \in I} E_{i}$ (we sum over the exceptional divisors of blow-ups with center in B). On the other hand, since $-K_{S}$ is ample, by Nakai-Moscheizon criterion, $-K_{S} . \widehat{B}>0$, i.e.:

$$
-K_{S} \cdot \widehat{B}=\left(2 g^{*} h-(n-2) g^{*} f-\sum_{i} E_{i}\right) \cdot\left(g^{*} h-g^{*} n f-\sum_{i \in I} E_{i}\right)=2 n-2 n-(n-2)-\# I \leqslant 2-n
$$

which is non-positive.

Thus $S_{\text {min }}=\mathbb{P}^{1} \times \mathbb{P}^{1}$ or $S_{\text {min }}=\mathbb{P}^{2}$.
Suppose that $S_{\text {min }}=\mathbb{P}^{2}$, i.e. S is \mathbb{P}^{2} with r points blown. Then $K_{S}=\pi^{*} K_{S_{\min }}+\sum_{i=1}^{r} E_{i}=-3 L+\sum_{i=1}^{r} E_{i}$. Thus:

$$
0<\left(-K_{S}\right) \cdot E_{i}=-E_{i}^{2}-\sum_{j \neq i} E_{i} \cdot E_{j}=1--\sum_{j \neq i} E_{i} \cdot E_{j}
$$

which implies that $E_{i} \cdot E_{j}=0$ (i.e. the r points are not infinitely near points, but points of \mathbb{P}^{2}). Moreover:

$$
0<K_{S}^{2}=9-r
$$

which implies that $r \leqslant 8$. Suppose that the r points do not lie in general position, i.e. either $t \geqslant 3$ (e.g. $P_{1}, \ldots P_{t}$) of them lie on a common line M or $t \geqslant 6$ of them (e.g. P_{1}, \ldots, P_{t}) on a common cubic C. Then:

$$
\left(-K_{S}\right) \cdot \widetilde{M}=\left(-K_{S}\right) \cdot\left(\pi^{*} M-\sum_{i=1}^{t} E_{i}\right)=\left(3 L-\sum_{i=1}^{r} E_{i}\right) \cdot\left(\pi^{*} M-\sum_{i=1}^{t} E_{i}\right)=3 L \cdot M-t=3-t \leqslant 0
$$

or

$$
\left(-K_{S}\right) \cdot \widetilde{C}=\left(-K_{S}\right) \cdot\left(\pi^{*} C-\sum_{i=1}^{t} E_{i}\right)=\left(3 L-\sum_{i=1}^{r} E_{i}\right) \cdot\left(\pi^{*} M-\sum_{i=1}^{t} E_{i}\right)=3 L \cdot C-t=6-t \leqslant 0
$$

- contradiction. Thus in this case S is isomorphic to \mathbb{P}^{2} with $r \leqslant 8$ points in general position blown.

Suppose now that $S_{\text {min }}=\mathbb{P}^{1} \times \mathbb{P}^{1}$.
????
V (3)
(This solution is stolen from Suzuki)
Step I: the group $\left\{\varphi \in \operatorname{Aut} \mathbb{P}^{n}: \varphi(S)=S\right\}$ is finite.

Proof:

Lemma: Suppose that an algebraic group G acts on a variety S. Then the function:

$$
s \mapsto \operatorname{dim} G s
$$

is lower-semicontinuous. In particular, for s in a dense open subset $\operatorname{dim} G s=\max \{\operatorname{dim} G x: x \in S\}$.
Pf: consider the diagram:

where $q: G \times S \rightarrow S \times S, q(g, s)=(g s, s)$. Then one easily checks that $\operatorname{Stab}(s) \cong p^{-1}(S)$ and thus:

$$
\operatorname{dim} G s=\operatorname{dim} G-\operatorname{dim} \operatorname{Stab}(s)=\operatorname{dim} G-\operatorname{dim} p^{-1}(S)
$$

It suffices to note that the dimension of the fiber is upper-semicontinuous.

Let G be the identity component of the algebraic group:

$$
\left\{\varphi \in \operatorname{Aut} \mathbb{P}^{n}: \varphi(S)=S\right\}
$$

Suppose to the contrary that $\operatorname{dim} G>0$. Note that the orbits of action of G on S are intersections of linear subspaces of \mathbb{P}^{n} with S. Moreover, they are connected, since G is. Let $m=\max \{\operatorname{dim} G x: x \in S\}$ and consider the following possibilities:
$1^{o} m=0$. In this case, $G s$ is a connected set of dimension 0 , hence $G s=\{s\} . ? ? ? ?$
$2^{\circ} m=1$. Then S is covered by rational curves (since G acts linearly on $S ? ? ? ?$) and thus by exercise III.10, S is ruled, contradiction.
$3^{o} m=2$. Then $G s$ is a dense open subset of S and (since the preimage of G under $\operatorname{Gl}(n, \mathbb{C}) \rightarrow \operatorname{PGl}(n, \mathbb{C})$ is a linear group and any linear group over a perfect infinite field is unirational, cf. Springer, 13.3.10. Corollary) S is unirational. Thus, by Corollary V.5, S is rational, contradiction.

Step II: Aut S is as claimed.
Proof: Recall that $\operatorname{Aut}(S)$ (for S - projective) is a projective variety and thus $\operatorname{Aut}^{0}(S)$ is an abelian variety. Let H be a very ample divisor associated to the embedding $S \subset \mathbb{P}^{n}$. Consider the morphism

$$
\Phi: \operatorname{Aut}^{0}(S) \rightarrow \operatorname{Pic}(S), \quad \varphi \mapsto \varphi^{*} H-H
$$

Note that since $\operatorname{Aut}^{0}(S)$ is connected, its image must lie in the connected component of $\operatorname{Pic}(S)$, i.e. $\operatorname{Pic}^{0}(S) \cong$ $\operatorname{Alb}(S)$, which is of dimension q. Now, $\operatorname{Aut}^{0}(S) \rightarrow \operatorname{Pic}^{0}(S)$ is a morphism between abelian varieties which maps identity to identity, and thus it is an homomorphism. Thus $\Phi\left(\operatorname{Aut}^{0}(S)\right)$ is an abelian variety of dimension $\leqslant q$. Moreover the kernel of Φ consists of those φ, which commute with $\phi_{|H|}$. We can extend each such φ to an automorphism of $\mathbb{P}^{n}=|H|^{\vee}$, since φ induces an isomorpshism of $|H|$. Thus:

$$
\operatorname{ker} \Phi=\left\{\varphi \in \operatorname{Aut} \mathbb{P}^{n}: \varphi(S)=S\right\}
$$

is finite by Step I and the map $\operatorname{Aut}^{0}(S) \rightarrow \operatorname{im} \Phi$ is an isogeny of abelian varieties, i.e. $\operatorname{Aut}^{0}(S)$ is an abelian variety of dimension $\leqslant q$. This ends the proof.

V (4) Note that we can identify $H^{0}\left(\mathcal{O}_{\mathbb{P}^{1}}(n)\right)$ with $\operatorname{Hom}\left(\mathcal{O}_{\mathbb{P}^{1}}, \mathcal{O}_{\mathbb{P}^{1}}(n)\right)$. Note that any element (φ, c) of

$$
T:=\operatorname{Hom}\left(\mathcal{O}_{\mathbb{P}^{1}}, \mathcal{O}_{\mathbb{P}^{1}}(n)\right) \rtimes \mathbb{C}^{*}
$$

corresponds to an automorphism $\Gamma_{(\varphi, c)}$ of the bundle $\mathcal{E}:=\mathcal{O}_{\mathbb{P}^{1}} \oplus \mathcal{O}_{\mathbb{P}^{1}}(n)$:

$$
(x, y) \mapsto(c x, y+\varphi(x))
$$

that fixes $0 \oplus \mathcal{O}(n) \subset \mathcal{E}$. In this way we obtain a morphism

$$
\mathbb{F}_{n}=\mathbb{P}(\mathcal{E}) \xrightarrow{\Gamma_{l \varphi, c}^{*}} \mathbb{P}(\mathcal{E})=\mathbb{F}_{n},
$$

which easily provides us a homomorphism $T \rightarrow$ Aut \mathbb{F}_{n}.
Let $\Gamma \in \operatorname{Aut} \mathbb{F}_{n}$ be now arbitrary. Note that $\Gamma(b)=b$ (since b is the unique curve on \mathbb{F}_{n} with negative selfintersection) and thus we obtain a morphism Aut $\mathbb{F}_{n} \rightarrow \operatorname{Aut} b=\operatorname{Aut} \mathbb{P}^{1}=\operatorname{PGl}(2, \mathbb{C})$.

Note that the map Aut $\mathbb{F}_{n} \rightarrow$ Aut b is onto, since it has a natural section $-\varphi \in \operatorname{Aut} b=$ Aut \mathbb{P}^{1} maps to $\mathbb{P}(\mathcal{E}) \xrightarrow{\varphi^{*}} \mathbb{P}\left(\varphi^{*} \mathcal{E}\right) \cong \mathbb{P}(\mathcal{E})(? ? ?)$.
????
V (5)
Erratum: I don't think the hint with $D \mapsto D+(\delta . D) \delta$ is useful, since this is an involution.
(Second part of the solution is based on R. Friedman, Algebraic Surfaces and Holomorphic Vector Bundles, Ch. 5, Prop. 22)

If S contains infinitely many lines then it is rational:

Let $f: S \rightarrow S_{\text {min }}$ be the morphism to the minimal model and suppose that it is a composite of n blow ups with exceptional divisors E_{1}, \ldots, E_{n}. Note that f contracts finitely many curves C_{1}, \ldots, C_{m}. Let C be an exceptional curve different from the E_{i} 's and C_{i} 's. Then $f(C)$ is a rational curve with $f(C)^{2} \geqslant 0$ (since each blow-up decreases the self-intersection and $f(C)^{2} \neq-1-S_{\text {min }}$ doesn't contain exceptional curves). Consider the morphism $\alpha: S_{\text {min }} \rightarrow \operatorname{Alb}\left(S_{\text {min }}\right)$. Note that it contracts infinitely many curves (all the $f(C)$'s) and thus (cf. exercise III (10), Lemma), $\operatorname{dim} \alpha\left(S_{\text {min }}\right)<2$.

We conclude that $S_{\min }$ is ruled or rational as in the end of the proof of Theorem V.19:

We have $f(C)^{2} \geqslant 0$, since $C^{2}=-1$ and each blow-up increases this value. Note that each blow-up descreases $K_{S} . C=-1$ and that each blow-up decreases this value, thus $K_{S_{m i n}} . f(C) \leqslant-2$. Let F be the fiber of α containing $f(C)$. Then Lemma III. 19 shows that $F=r \cdot f(C)$. Then $F^{2}=0$ and thus $f(C)^{2}=0$. By the genus formula, if F^{\prime} is a general fiber, we have:

$$
2 g\left(F^{\prime}\right)-2=F^{\prime}\left(K_{S_{\min }}+F^{\prime}\right) \leqslant-2 r
$$

and thus $r=1, F=C$. Thus $S_{\text {min }}$ is ruled by Noether-Enriques.
Suppose to the contrary that S is ruled over a curve $D, g(D)>0$, i.e. $S_{\text {min }}=\mathbb{P}_{D}(E)$. Then $f(C)$ must lie in a fiber (since there are no non-constant morphisms $\mathbb{P}^{1} \rightarrow D$). But thus there are finitely many choices for $f(C)-$ these must be the fibers in which we performed the n-blow-ups in f ! Thus there are finitely many choices for C (which is a strict transform of $f(C)$). The contradiction means that $S_{\text {min }}$ is ruled over \mathbb{P}^{1}.

Existence of S : let P be a pencil of irreducible cubic curves on \mathbb{P}^{2} (i.e. take cubic equations f_{1}, f_{2} and let $P:=\left\{\lambda_{1} f_{1}+\lambda_{2} f_{2}\right\}$) and let p_{1}, \ldots, p_{9} be the base points of P (i.e. the intersection of $f_{1}=0$ and $f_{2}=0$). Let also S be the blow-up of \mathbb{P}^{2} at p_{1}, \ldots, p_{9}. Then:
(a) $K_{S} \sim-3 L+\sum_{i=1}^{9} E_{i}$, where L is the strict transform of any line in \mathbb{P}^{2} and E_{i} are the exceptional curves at p_{i} 's.
(b) $-K_{S} \sim \widetilde{C}$ for any $C \in P$. Indeed, $\widetilde{C} \sim \pi^{*} C-\sum_{i=1}^{9} E_{i} \sim 3 L-\sum_{i=1}^{9} E_{i}$.
(c) $-K_{S}$ is nef. Indeed, since $-K_{S} \sim \widetilde{C}$, it suffices to check that $\left(-K_{S}\right)^{2} \geqslant 0$. This is immediate:

$$
\left(-3 L+\sum_{i=1}^{9} E_{i}\right)^{2}=9-9=0
$$

(d) If C is an irreducible curve and $C .\left(-K_{S}\right)=0$ then $C \equiv_{n u m}-q K_{S}$ for some $q \in \mathbb{Q}_{+}$. Indeed, by Hodge index theorem, since $-K_{S}$ is nef and $C \in\left\langle-K_{S}\right\rangle^{\perp}$, we have $C^{2} \leqslant 0$. If $C^{2}<0$, then by genus formula we would obtain $C^{2}=-2, g(C)=0$. But this is impossible:

Lemma: S doesn't contain rational curves with $C^{2}=-2$.
Proof: note that C is a strict transform of a plane curve of degree d. Then $C \sim d L-\sum_{i=1}^{9} a_{i} E_{i}$ for $a_{i} \geqslant 0$. Then:

$$
\begin{gathered}
0=C \cdot K=-3 d+\sum_{i} a_{i} \\
-2=C^{2}=d^{2}-\sum_{i} a_{i}^{2}
\end{gathered}
$$

i.e. $\sum_{i} a_{i}^{2}=\left(\frac{1}{3} \sum_{i} a_{i}\right)^{2}+2$. Let $r:=\#\left\{i: a_{i} \neq 0\right\}$. Then by Cauchy-Schwarz inequality: $\sum_{i} a_{i}^{2} \geqslant$ $\frac{1}{r}\left(\sum_{i} a_{i}\right)^{2}$ and

$$
-2 \leqslant \frac{1}{9}(r-9) \cdot \sum_{i} a_{i}^{2} .
$$

If $a_{i} \in\{0,1\}$ for all i, then $3 d=r$ and $d^{2}=r-2$. Thus $d^{2}-3 d+2=0$ and $d \in\{1,2\}$. Thus C is a transform of a line or a quadric and either three of points p_{1}, \ldots, p_{9} would have to lie on a line, or six of points p_{1}, \ldots, p_{9} would have to lie on a quadrics. Contradiction! Now suppose that $a_{i} \geqslant 2$ for at least one i. Then $\frac{1}{9}(r-9)\left(\sum_{i} a_{i}^{2}\right) \leqslant \frac{1}{9}(r-9)(r+3)$, which is less then -2 for $r \neq 8$. In the case $r=8$, one has to perform easy but tedious analysis. See Friedman, p. 127 for the full proof.

Thus $C^{2}=0$, which implies by Hodge Index Theorem that $C \equiv_{n u m}-q K_{S}$ for some $q \in \mathbb{Q}_{+}$.
Claim: Any divisor $D \in \operatorname{Div}(S)$ with $D^{2}=-1, K_{S} \cdot D=-1$ is equivalent to an exceptional curve.
Proof of claim 1: We start by showing that it is equivalent to an effective divisor. By Riemann-Roch:

$$
h^{0}(D)+h^{0}(K-D) \geqslant \chi\left(\mathcal{O}_{S}\right)+\frac{1}{2}\left(D^{2}-K_{S} \cdot D\right)=1+0 .
$$

Note that $K-D$ is not equivalent to an effective divisor, since $(K-D) \cdot \widetilde{C}=(K-D) \cdot(-K)=-1$. Thus $h^{0}(D) \geqslant 1,|D| \neq \varnothing$ and WLOG $D=\sum_{i} n_{i} C_{i}$ is effective. Note that $1=(-K) \cdot D=\sum_{i} n_{i}(-K) . C_{i}$. Since
$(-K) \cdot C_{i} \geqslant 0$ and by previous remarks, WLOG $D=C_{1}+\sum_{i>1} n_{i} C_{i}$, where $(-K) \cdot C_{1}=1, C_{i} \equiv_{n u m} m_{i}\left(-K_{S}\right)$ for $m_{i} \in \mathbb{Q}$ + and $D \equiv_{n u m} C_{1}+n \cdot\left(-K_{S}\right)$. Thus we have:

$$
-1=D^{2}=C_{1}^{2}+2 n \cdot\left(-K_{S}\right) \cdot C_{1}=C_{1}^{2}+2 n \cdot \widetilde{C} \cdot C_{1}=C_{1}^{2}+2 n
$$

but by genus formula $C_{1}^{2} \geqslant-2$ and thus $n=0, C_{1}^{2}=-1, g\left(C_{1}\right)=0$. This shows the claim.
Claim 2: exceptional curves are in bijection with the lattice $\left\langle\left[K_{S}\right]\right\rangle^{\perp} /\left\langle\left[K_{S}\right]\right\rangle$ (where $\left[K_{S}\right]$ is the numerical class of K_{S}).

Proof of claim 2: fix an exceptional curve, e.g. E_{1}. We claim that the bijection is given by:

$$
\begin{aligned}
\text { exceptional curves } & \leftrightarrow\left\langle\left[K_{S}\right]\right\rangle^{\perp} /\left\langle\left[K_{S}\right]\right\rangle \\
C & \mapsto\left[C-E_{1}\right] \\
D+E_{1}+n K & \leftrightarrow[D],
\end{aligned}
$$

where $n=\frac{1}{2} D^{2}-D \cdot E_{1}$ (note that $2 \mid D^{2}$ by the genus formula). Indeed, by Claim 1, exceptional curves are in bijection with divisor classes C such that $C^{2}=C \cdot K=-1$. Thus if C is such a class then $\left(C-E_{1}\right) \cdot K=$ $-1-(-1)=0$. The other way around, if $[D] \in\left\langle\left[K_{S}\right]\right\rangle^{\perp} /\left\langle\left[K_{S}\right]\right\rangle$ then $\left(D+E_{1}+n K\right) \cdot K=E_{1} \cdot K=-1$ and:

$$
\left(D+E_{1}+n K\right)^{2}=D^{2}+E_{1}^{2}+n^{2} K^{2}+2 D \cdot K+2 n E_{1} \cdot K+2 D \cdot E_{1}=D^{2}-1+0+0-2 n+2 D \cdot E_{1}
$$

which equals to -1 iff $n=\frac{1}{2} D^{2}-D \cdot E_{1}$.
End of the proof: $\rho(S)=10$ and thus $\left\langle\left[K_{S}\right]\right\rangle^{\perp} /\left\langle\left[K_{S}\right]\right\rangle \cong \mathbb{Z}^{8}$ Note that $\rho\left(\mathbb{P}^{2}\right)=1$ and each blow-up increases ρ by one. Thus $\rho(S)=1+9=10$. This means that S has infinitely many exceptional curves.
(Note that this does not contradict Hartshorne, AG, Corollary V.5.4. - only finitely many of those curves are contracted by the map $S \rightarrow \mathbb{P}^{2}$; the image of the rest of them are some rational curves)

VI Surfaces with $p_{g}=0, q \geqslant 1$

VI (1) By the genus formula:

$$
0=2 g_{H}-2=H^{2}+H . K
$$

Thus $H . K=-H^{2}<0$ (since H^{2} equals the degree of S in \mathbb{P}^{n}, it is positive) and by Corollary VI. 18 (2), S must be ruled.

Suppose to the contrary that $q(S) \geqslant 2$. Then we obtain a morphism $\varphi: S \rightarrow C$ to a smooth projective curve C of genus $q(S)$ (by composing $S \rightarrow S_{\text {min }}$ with $S_{\text {min }} \rightarrow C$ - recall that $S_{\text {min }}$ is geometrically ruled). Any morphism $H \rightarrow C$ must be constant, since $g(H) \leqslant g(C)$. Thus H is contained in a fiber f of φ. But $f^{2}=0$ (since any two fibers are algebraically equivalent) and on the other hand $f=\sum_{i} n_{i} f_{i}+n H$ for $n>0, n_{i} \geqslant 0$, implying $f^{2}>0$. Contradiction means that $q(S) \leqslant 1$.

If $q(S)=1$ then S is ruled over a curve of genus 1, i.e. an elliptic curve.
Suppose finally that $q(S)=0$. Note that then $\chi\left(\mathcal{O}_{S}\right)=1+p_{a}(S)=1+q(S)+p_{g}(S)=1$. Moreover, by Kodaira vanishing $h^{1}(K+H)=h^{2}(K+H)=0$. Thus, by Riemann-Roch:

$$
h^{0}(K+H)=\chi(\mathcal{O}(K+H))=\chi\left(\mathcal{O}_{S}\right)+\frac{1}{2}\left((H+K)^{2}-(H+K) \cdot K\right)=1+\frac{1}{2}(H+K) \cdot H=1+0
$$

Thus $|K+H| \neq \varnothing$. Let $D \in|K+H|$ - then $D \cdot H=(K+H) \cdot H=0$ and on the other hand $D \cdot H$ is the degree of D, since H is very ample. Thus $D=0$ and $K+H \sim 0$. By ex. V.21(2) this is possible iff S is S_{d} or S_{8}^{\prime}.
S_{d} and S_{8}^{\prime} have elliptic sections: note that $K+H \sim 0$ automatically implies that $2 g_{H}-2=H .(H+K)=0$ and $g_{H}=1$.

Example of elliptic ruled surface with elliptic sections: ??? ??

Remark: (b) is not true.
Let H be a smooth hyperplane section of S. Consider the exact sequence:

$$
\begin{equation*}
0 \rightarrow \mathcal{O}_{S} \rightarrow \mathcal{O}_{S}(H) \rightarrow \mathcal{O}_{H}(H) \rightarrow 0 \tag{*}
\end{equation*}
$$

and note that $\mathcal{O}_{H}(H)=\mathcal{O}_{H}(D)$ for an effective $D \in \operatorname{Div}(H)$, $\operatorname{deg} D=H . H$ (one can denote D as $H \cdot H$). By taking the long exact sequence of (*) we obtain:

$$
0 \rightarrow H^{0}\left(\mathcal{O}_{S}\right) \rightarrow H^{0}\left(\mathcal{O}_{S}(H)\right) \rightarrow H^{0}\left(\mathcal{O}_{H}(D)\right) \rightarrow H^{1}\left(\mathcal{O}_{S}\right) \rightarrow H^{1}\left(\mathcal{O}_{S}(H)\right) \rightarrow H^{1}\left(\mathcal{O}_{H}(D)\right) \rightarrow \ldots(* *)
$$

Observe that $H^{0}\left(\mathcal{O}_{S}\right)=k, \operatorname{dim} H^{1}\left(\mathcal{O}_{S}\right)=q$ and $\operatorname{dim} H^{0}\left(\mathcal{O}_{S}(H)\right)=n+1$ (since the morphism given by the very ample divisor H embedds S into \mathbb{P}^{n} and the image is not contained in any hyperplane). Note also that by the genus formula:

$$
2 g_{H}-2=H^{2}+H . K
$$

and thus: $\left(2 g_{H}-2\right)-\operatorname{deg} D=H . K$.
Finally, note that the degree of S in \mathbb{P}^{n} is $d=\operatorname{deg} D(=H . H)$ (cf. Hartshorne, exercise V.1.2).
(a) Note that $H . K \geqslant 0$ by Corollary VI. 18 (2) and thus $0 \leqslant \operatorname{deg} D \leqslant 2 g_{H}-2$. Thus, by Clifford theorem and by ($* *$):

$$
n+1=\operatorname{dim} H^{0}\left(\mathcal{O}_{S}(H)\right) \leqslant H^{0}\left(\mathcal{O}_{S}\right)+\operatorname{dim} H^{0}\left(\mathcal{O}_{H}(D)\right)=1+\operatorname{dim} H^{0}\left(\mathcal{O}_{H}(D)\right) \leqslant 1+\left(\frac{1}{2} \operatorname{deg} D+1\right)
$$

which leads to $\operatorname{deg} D \geqslant 2 n-2$.
Suppose that equality holds. Then, by Clifford's theorem (cf. Hartshorne, AG, Theorem IV.5.4), we have three cases to consider:
$1^{o} D=0-$ this is impossible, since $d=\operatorname{deg} D>0$.
$2^{o} D=K_{H}$ - then $\operatorname{deg} D=2 g_{H}-2$ and (by the above formulas) $K_{S} \cdot H=0$. Suppose that $E \in\left|n K_{S}\right|$ for $n \geqslant 0$. Then $E . H=n K_{S} \cdot H=0$. Since H is very ample and E - effective, this is possible only if $E=0$. Thus $\left|n K_{S}\right|=\{0\}$ or $\left|n K_{S}\right|=\varnothing$ for all n. The second case implies that S is ruled (Corollary VI. 18 (4)), so we are left with $K_{S} \sim 0$.
$3^{\circ} D$ is a degree 2 divisor on the hyperelliptic curve H with $h^{0}(D)=2$. Then $2=\operatorname{deg} D=2 n-2$ and $n=2$. Thus we have $S \subset \mathbb{P}^{2}$ and $S=\mathbb{P}^{2}$, which is false.
(b) This is not true. See Suzuki's solutions for a counterexample.

VI (3) Note firstly that if S is bielliptic, then $12 K \equiv 0$ and $h^{0}(12 K)=h^{0}\left(\mathcal{O}_{S}\right)=1$.
Suppose now that S is not bielliptic. We consider two cases, just as in Theorem VI.13.
1^{o} (F is not elliptic)
By the proof of Proposition VI.15:

$$
P_{12}(S)=\max \left\{\operatorname{deg} \mathcal{L}_{12}+1,0\right\}, \text { where } \operatorname{deg} \mathcal{L}_{12}=-24+\sum_{P}\left[12 \cdot\left(1-1 / e_{P}\right)\right]
$$

and where e_{P} are ramification indicies of $F \rightarrow F / G$. Let r be the number of ramification points and suppose $e_{1} \geqslant e_{2} \geqslant \ldots$. By Riemann-Hurwitz formula: $\sum_{i}\left(1-1 / e_{i}\right) \geqslant 2$. Again, we divide into subcases:
(a) $r \geqslant 5$.

Then, for any ramification point $\left[12 \cdot\left(1-1 / e_{P}\right)\right] \geqslant 6$ and $P_{12}(S) \geqslant 6+1=7$.
(b) $r=4$.

If $e_{1} \geqslant 3$ then $\left[12 \cdot\left(1-1 / e_{1}\right)\right] \geqslant 8$ and $\left[12 \cdot\left(1-1 / e_{1}\right)\right] \geqslant 6$ for $i=2,3,4$ and thus $P_{12}(S) \geqslant 3$. Suppose now that $e_{1}=\ldots=e_{4}=2$. Then, by Riemann-Hurwitz $2 \leqslant 2 g(F)-2=-2 n+4$ and thus $n=1$ and $B \rightarrow B / G$ is an isomorphism, contradiction.
(c) $r=3$.

Recall that $\sum_{i}\left(1-1 / e_{i}\right) \geqslant 2$, i.e. $1 \geqslant \frac{1}{e_{1}}+\frac{1}{e_{2}}+\frac{1}{e_{3}}$, which implies that either $e_{1}, e_{2}, e_{3}>3$ or $\left(e_{1}, e_{2}, e_{3}\right) \in$ $\{(3,3,3),(2, \geqslant 3, \geqslant 4)\}$. One easily checks that in each of those cases $P_{12}(S) \geqslant 2$.
(d) $r \leqslant 2$ is impossible, since $\sum_{i}\left(1-1 / e_{i}\right) \geqslant 2$.
2^{o} (B is not elliptic)
By the proof of Proposition VI.15:

$$
P_{12}(S)=h^{0}(B / G, D), \text { where } D=\sum_{P}\left[12 \cdot\left(1-1 / e_{P}\right)\right] P
$$

and where e_{P} are ramification indicies of $B \rightarrow B / G$. Note that since $g(B) \neq g(B / G)=1$, there must be at least one ramification index $e_{P_{0}}>1$, which implies that $\left[12 \cdot\left(1-1 / e_{P_{0}}\right)\right] \geqslant 6$ and $\operatorname{deg} D \geqslant 6$. Thus, by Riemann-Roch:

$$
P_{12}(S)=h^{0}(B / G, D)=\operatorname{deg} D \geqslant 6 .
$$

VI (4) (Errata: one should suppose that S admits a morphism to a non-rational curve?)
Suppose that $p: S \rightarrow B$ is a surjective morphism. Then, we can assume that B is normal (by replacing B by its normalization and using the universality property of normalization). Moreover, by Stein factorisation, we can assume that p has connected fibers. Then by Proposition X. $100=\chi_{t o p}(S) \geqslant \chi_{t o p}(B) \cdot \chi_{t o p}\left(F_{\eta}\right)$. Note that $\chi\left(F_{\eta}\right)=2-2 g\left(F_{\eta}\right) \leqslant 0$, since if we would have $g\left(F_{\eta}\right)=0$ then S would be ruled by Noether-Enriques Theorem. By assuption $g(B) \geqslant 1$. Consider the following cases:
$1^{o} g\left(F_{\eta}\right)=1$.
In this case we have an equality in the inequality from Proposition X.10, which implies (after analyzing the proof) that the fibers of $p: S \rightarrow B$ are smooth, i.e. p is smooth. Moreover, they are of genus 1 . Thus, by Proposition VI.8: $S \cong(B \times F) / G$ and by Lemma VI. 10 we can assume that G acts both on B and F.
$2^{o} g\left(F_{\eta}\right) \geqslant 2$.
In this case the inequality of Proposition X. 10 yields $g(B)=1$. We proceed in the same way as in 1°.

VII Kodaira dimension

VII (1)

Lemma Let R be a graded integral \mathbb{C}-algebra with field of fractions K. Suppose that the transcendence degree of R over \mathbb{C} is d. Then there exist algebraically independent (over \mathbb{C}) elements $f_{1}, \ldots, f_{d} \in R$, which are homogeneous of the same degree.
Proof: Choose any algebraically independent (over \mathbb{C}) elements $f_{1}, \ldots, f_{d} \in R$. Suppose that f_{1}, \ldots, f_{m} are already homogeneous of the same degree. If all the homogeneous components of f_{m+1} were algebraically dependent from $f_{1}, \ldots, f_{m-1}, f_{m+1}, \ldots f_{d}$, then f_{m+1} would also be dependent. Thus we can replace f_{m+1} by its homogeneous component in such a way that the transcendence degree of $\mathbb{C}\left(f_{1}, \ldots, f_{d}\right)$ is still d.
Thus, after d steps we can assume that f_{1}, \ldots, f_{d} are all homogeneous. By replacing f_{i} 's by suitable powers, we can assume that they are of the same degree. This ends the proof.

By the Lemma, we can choose $f_{1}, \ldots, f_{d} \in \Gamma\left(V, \mathcal{O}_{V}(n K)\right)$, which are algebraically independent. Let f_{d+1}, \ldots, f_{N} be such that f_{1}, \ldots, f_{N} is a basis of $\Gamma\left(V, \mathcal{O}_{V}(n K)\right)$. We want to show that $\varphi_{|n K|}(V)$ has dimension at least $d-1$. Note that on $U:=\left\{x: f_{1}(x) \neq 0\right\}, \varphi_{|n K|}$ is given by $\left[1: f_{2} / f_{1}: \ldots: f_{m} / f_{1}\right]$. Note that the coordinates 2 to d are algebraically independent, and thus the image of U has dimension $d-1$. This ends the proof.

VII (2) Let $S=\oplus_{n \geqslant 0} H^{0}\left(\mathcal{O}_{V}\left(n K_{V}\right)\right)=\bigoplus_{n} S_{n}, T=\oplus_{n \geqslant 0} H^{0}\left(\mathcal{O}_{W}\left(n K_{W}\right)\right)=\oplus_{n} T_{n}$. By Fact III. 22 (i) and (ii):

$$
H^{0}\left(\mathcal{O}_{V \times W}\left(n K_{V \times W}\right)\right)=H^{0}\left(\mathcal{O}_{V}\left(n K_{V}\right)\right) \otimes_{\mathbb{C}} H^{0}\left(\mathcal{O}_{W}\left(n K_{W}\right)\right)=S_{n} \otimes_{\mathbb{C}} T_{n}
$$

i.e.

$$
\bigoplus_{n \geqslant 0} H^{0}\left(\mathcal{O}_{V \times W}\left(n K_{V \times W}\right)\right)=\bigoplus_{n} S_{n} \otimes_{\mathbb{C}} T_{n}
$$

is the cartesian product of the graded \mathbb{C}-algebras S and $T, S \times_{\mathbb{C}} T$ (cf. Hartshorne, Algebraic Geometry, Exercise II.5.11). By the same exercise in Hartshorne:

$$
\operatorname{Proj} \bigoplus_{n \geqslant 0} H^{0}\left(\mathcal{O}_{V \times W}\left(n K_{V \times W}\right)\right)=\operatorname{Proj} S \times_{\mathbb{C}} \operatorname{Proj} T
$$

Thus the dimension of the above scheme is $\operatorname{dim} \operatorname{Proj} S+\operatorname{dim} \operatorname{Proj} T$ and therefore the transcendence degree of $\oplus_{n \geqslant 0} H^{0}\left(\mathcal{O}_{V \times W}\left(n K_{V \times W}\right)\right)$ equals the transcendence degree of S plus the transcendence degree of T, which ends the proof by the previous exercise.

VII (3) We will use the following Lemma:
Lemma (MO80288) Let $\pi: V \rightarrow W$ be a generically separable surjective morphism of projective smooth varieties of the same dimension. Then:

$$
K_{V}-\pi^{*} K_{W} \geqslant 0
$$

Moreover, if π is étale, $K_{V}=\pi^{*} K_{W}$.
Proof: consider the relative cotangent exact sequence:

$$
0 \rightarrow \pi^{*} \Omega_{W / k} \rightarrow \Omega_{V / k} \rightarrow \Omega_{V / W} \rightarrow 0
$$

(it is exact on the left, since π is generically separable and $\operatorname{dim} V=\operatorname{dim} W$, cf. [Ravi Vakil, Foundations, Proposition 21.7.2]). By taking determinant, we see that $\pi^{*} \omega_{W / k} \subset \omega_{V / k}$. This ends the proof of the first part. The second is straightforward, since in that case $\Omega_{V / W}=0$ by definition of étale morphism.

Note that by projection formula, since K_{W} is a line bundle, $\pi_{*} \pi^{*} K_{W}=K_{W}$ and thus

$$
H^{0}\left(W, n K_{W}\right) \cong H^{0}\left(W, \pi_{*} n \pi^{*} K_{W}\right) \cong H^{0}\left(V, n \pi^{*} K_{W}\right)
$$

and the last space embedds into $H^{0}\left(V, n K_{V}\right)$ by the Lemma. Thus the canonical ring of W embedds into that of V and $\kappa(W) \leqslant \kappa(V)$. If π is étale then $K_{V}=\pi^{*} K_{W}$ and the canonical rings are equal, which leads to the conclusion.

VIII Surfaces with $\kappa=0$

VIII (1) (Errata: probably, it was meant to be $P_{12}>1$?)
Observe that S is non-ruled, as otherwise $p_{g}=0$. Note that by assumption $p_{a}(S)=p_{g}(S)-q(S)=-1$ and thus $\chi\left(\mathcal{O}_{S}\right)=0$. Thus, by Theorem X.4, $\kappa(S)<2$, which implies (by Lemma IX. 1 and Proposition VI.2) that $K_{S}^{2}=0$. Thus by Noether formular, $\chi_{t o p}(S)=12 \chi\left(\mathcal{O}_{S}\right)=0$. Therefore by ex. VI. $4, S=(B \times F) / G$, where B is an elliptic curve. Also, we can assume that G acts on B and F by Lemma VI.10. Now, by proof of Theorem VI.13, $2=q(S)=g(B / G)+g(F / G)$. Note that $g(B / G) \leqslant g(B)=1$. We consider the following two cases:
$1^{o} g(B / G)=1$. In this case $g(F / G)=1$. This is possible iff we have group monomorphisms $\phi_{1}: G \rightarrow B$, $\phi_{2}: G \rightarrow F$ and G acts via translations via ϕ_{1}, ϕ_{2}. But then G might be considered as a subgroup of $B \times F$ via $\left(\phi_{1}, \phi_{2}\right): G \rightarrow B \times F$ and a quotient of an abelian variety by a subgroup is an abelian variety.
$2^{o} g(B / G)=0$. In this case $g(F / G)=2$. We'll show that $P_{2}>1$. By proof of Proposition VI.15:

$$
P_{12}=\operatorname{dim}\left(H^{0}\left(\omega_{B}^{\otimes 12}\right) \otimes H^{0}\left(\omega_{F}^{\otimes 12}\right)\right)^{G}
$$

Note that $H^{0}\left(\omega_{B}^{\otimes 12}\right)$ is G-invariant (one checks that via the explicit description of automorphisms of an elliptic curve). Thus

$$
P_{12}=\operatorname{dim} H^{0}\left(\omega_{F}^{\otimes 12}\right)^{G}=\operatorname{dim} H^{0}\left(F / G, \mathcal{L}_{12}\right), \text { where } \mathcal{L}_{12}=\omega_{F / G}^{\otimes 12} \otimes \mathcal{O}\left(\sum_{P \in F / G}\left[12 \cdot\left(1-1 / e_{P}\right)\right]\right)
$$

and e_{P} are the ramification indices of $F \rightarrow F / G$. Note that:

$$
\operatorname{deg} \mathcal{L}_{12}=12 \cdot(2 \cdot 2-2)+\sum_{P}\left[12 \cdot\left(1-1 / e_{P}\right)\right]
$$

Thus $\operatorname{deg} \mathcal{L}_{12}>2 g(F / G)-2=2$ and the proof follows by Riemann-Roch.
VIII (10) Consider the following two cases:
(a) $g=2 k+1$. Let S be the surface given by the equation:

$$
w^{2}=f(x, y), \quad(x, y) \in \mathbb{P}^{1} \times \mathbb{P}^{1}
$$

(where f is of bidegree 4 , e.g. ???) inside of ?? $\mathbb{W} \mathbb{P}(2,1,1)$??. Note that S is smooth ??.
Consider the map $\pi: S \rightarrow \mathbb{P}^{1} \times \mathbb{P}^{1}, \pi(x, y, w)=(x, y)$. This is a double cover branched along $C_{1}: f(x, y)=0$. Thus by Riemann-Hurwitz formula:

$$
K_{S}=\pi^{*} K_{\mathbb{P}^{1} \times \mathbb{P}^{1}}+R_{S / \mathbb{P}^{1} \times \mathbb{P}^{1}}=\pi^{*}\left(-2 H_{1}-2 H_{2}\right)+C_{2}
$$

(where $C_{2}: w=f(x, y)=0 \subset S$). But $\pi^{*}\left(C_{1}\right)=e\left(C_{1}\right) \cdot C_{2}=2 \cdot C_{2}$ and on the other hand $\pi^{*}\left(C_{1}\right)=$ $\pi^{*}\left(-4 H_{1}-4 H_{2}\right)$. Therefore:

$$
K_{S} \sim 0
$$

and S is a K3 surface.
Let C be the preimage in S of any smooth curve in $\left|H_{1}+k H_{2}\right|$. Then $\varphi_{|C|}$ is a composition of:

$$
S \xrightarrow{\pi} \mathbb{P}^{1} \times \mathbb{P}^{1} \xrightarrow{\varphi_{\left|H_{1}+k H_{2}\right|}^{\longrightarrow}} \mathbb{P}^{2 k+1}
$$

- this ends the proof in this case.
(b) Let $C^{\prime}: f(x, y, z)=0$ be any nodal sextic in \mathbb{P}^{2}, e.g. ??, with node in P_{0}. Let S^{\prime} be given by the equation:

$$
w^{2}=f(x, y, z)
$$

in ?? the weighted projective space $\mathbb{W} \mathbb{P}(3,1,1)$. Let also $\pi^{\prime}: S^{\prime} \rightarrow \mathbb{P}^{2},(x, y, z, w) \mapsto(x, y, z)$ - it is a double cover, branched in C^{\prime}. Consider now the blow-ups in P_{0} and $\pi^{\prime-1}\left(P_{0}\right)$:

VIII (12) Consider the universal coefficient theorem for cohomology:

$$
0 \rightarrow \operatorname{Ext}_{\mathbb{Z}}^{1}\left(\mathrm{H}_{i-1}(X, \mathbb{Z}), \mathbb{Z}\right) \rightarrow H^{i}(X ; \mathbb{Z}) \rightarrow \operatorname{Hom}_{\mathbb{Z}}\left(H_{i}(X ; \mathbb{Z}), \mathbb{Z}\right) \rightarrow 0
$$

Note that for any finitely generated abelian group M :

- $\operatorname{Hom}_{\mathbb{Z}}(M, \mathbb{Z})$ is torsion-free,
- $\operatorname{Ext}_{\mathbb{Z}}(M, \mathbb{Z}) \cong M_{\text {tors }}, \operatorname{since} \operatorname{Ext}_{\mathbb{Z}}(\mathbb{Z} / n, \mathbb{Z}) \cong \mathbb{Z} / n, \operatorname{Ext}_{\mathbb{Z}}(\mathbb{Z}, \mathbb{Z}) \cong 0$.

Therefore, $H^{i}(X ; \mathbb{Z})_{\text {tors }} \cong H_{i-1}(X, \mathbb{Z})_{\text {tors }}$.
Let S be a K3 surface. Then $b_{1}(S)=2 q(S)=0$ and thus $H_{1}(S, \mathbb{Z})$ is finite. Note that $H_{1}(S, \mathbb{Z})=\pi_{1}(S, s)^{a b}$. Let $\pi: \widetilde{S} \rightarrow S$ be an étale cover of S of degree n. Then by ex. VII (3), $\kappa(\widetilde{S})=0$ and thus $p_{g}(\widetilde{S}) \leqslant 1$. On the other hand:

$$
\chi\left(\mathcal{O}_{\tilde{S}}\right)=n \cdot \chi\left(\mathcal{O}_{S}\right)=n \cdot\left(1-q(S)+p_{q}(S)\right)=2 n
$$

and, since $\chi\left(\mathcal{O}_{\tilde{S}}\right)=1-q(\widetilde{S})+p_{q}(\widetilde{S}), p_{g}(\widetilde{S}) \geqslant 2 n-1$. Thus $1 \geqslant 2 n-1$ and $n=1$, i.e. π is an isomorphism. Thus S has no non-trivial étale covers. Therefore $H_{1}(S, \mathbb{Z})=0$ (since every finite topological cover of S is an algebraic surface, which is an étale cover of S) and $H^{2}(S, \mathbb{Z})_{\text {tors }}=H_{1}(S, \mathbb{Z})=0$.

Let S be now an Enriques surface with a double cover $\pi: \widetilde{S} \rightarrow S$, where \widetilde{S} is a K3 surface. Then $\pi_{1}(S, s) / \pi_{1}(\widetilde{S}, \widetilde{s}) \cong$ $\mathbb{Z} / 2$ and in particular $H_{1}(S, \mathbb{Z}) \cong H_{1}(S, \mathbb{Z}) / H_{1}(\widetilde{S}, \mathbb{Z}) \cong \mathbb{Z} / 2$. Therefore $H^{2}(S, \mathbb{Z})_{\text {tors }}=H_{1}(S, \mathbb{Z})=\mathbb{Z} / 2$. Finally, note that $[K]$ (the image of K under $\operatorname{Pic} S \rightarrow H^{2}(S, \mathbb{Z})$) is non-zero:

- the kernel of Pic $S \rightarrow H^{2}(S, \mathbb{Z})$ is the complex torus of dimension $q(S)=0$, i.e. it is trivial,
- $K \nsucc 0$, since $p_{g}(S)=0 \neq 1$
and $2[K]=[2 K]=0$. Thus $H^{2}(S, \mathbb{Z})_{\text {tors }}=\langle[K]\rangle \cong \mathbb{Z} / 2$. This ends the proof.

IX Surfaces with $\kappa=1$

IX (1)
P is surjective: note that $B \subset \operatorname{im} P$ and thus $\operatorname{Jac}(B) \subset \operatorname{im} P$, since B generates $\operatorname{Jac}(B)$.
$q(S) \in\{g(B), g(B)+1\}$: by low degree terms exact sequence for Leray spectral sequence:

$$
0 \rightarrow H^{1}\left(B, \mathcal{O}_{B}\right) \rightarrow H^{1}\left(S, \mathcal{O}_{S}\right) \rightarrow H^{0}\left(B, R^{1} p_{*} \mathcal{O}_{S}\right) \rightarrow 0
$$

(note that $p_{*} \mathcal{O}_{S}=\mathcal{O}_{B}$, since ????). Hence:

$$
q(S)=\operatorname{dim} H^{1}\left(\mathcal{O}_{S}\right)=\operatorname{dim} H^{1}\left(\mathcal{O}_{B}\right)+\operatorname{dim} H^{0}\left(R^{1} p_{*} \mathcal{O}_{S}\right)=g(B)+\operatorname{dim} H^{0}\left(R^{1} p_{*} \mathcal{O}_{S}\right) .
$$

Consider now $\mathcal{L}:=R^{1} p_{*} \mathcal{O}_{S}$. Note that for all fibers, singular or not, $\operatorname{dim} H^{1}\left(F_{b}, \mathcal{O}_{F_{b}}\right)=1$ (this follows by classification of singular fibers?). Thus \mathcal{L} is a line bundle by Grauert theorem ([Hartshorne, AG, Corollary 12.9])

Moreover, the degree of \mathcal{L} equals $-\chi\left(\mathcal{O}_{S}\right)$. Indeed, by taking the Euler characteristic of the Leray spectral sequence:

$$
\begin{aligned}
& \chi\left(\mathcal{O}_{S}\right)=\sum_{p, q}(-1)^{p+q} \chi\left(E_{2}^{p q}\right)=\operatorname{dim} H^{0}(\mathcal{L})-\operatorname{dim} H^{1}(\mathcal{L})+\operatorname{dim} H^{1}\left(\mathcal{O}_{B}\right)-\operatorname{dim} H^{0}\left(\mathcal{O}_{B}\right) \\
& \chi\left(\mathcal{O}_{S}\right)=(\operatorname{deg} \mathcal{L}+1-g(B))+(g(B)-1) .
\end{aligned}
$$

Therefore, by Castelnuovo inequality:

$$
\operatorname{deg} \mathcal{L}=-\chi\left(\mathcal{O}_{S}\right) \leqslant 0
$$

and we have two possibilities:

- $\mathcal{L} \cong \mathcal{O}_{B}$ - then $\operatorname{dim} H^{0}(\mathcal{L})=1$ and $q(S)=g(B)+1$,
- $\mathcal{L} \not \not \mathcal{O}_{B}$ - then $H^{0}(\mathcal{L})=0$ and $q(S)=g(B)$.

Kernel of P : suppose that $q(S)=g(B)+1$. Then the kernel of P is one-dimensional, and thus it is an elliptic curve E. Fix an embedding $\beta: B \rightarrow \operatorname{Jac}(B)$. Let $b \in B$ and suppose that F_{b} is smooth. Then the fiber of $\beta(b)$ via $\operatorname{Alb}(S) \rightarrow \operatorname{Jac}(B)$ is a translate of E. Thus we obtain a morphism $F_{b} \rightarrow E$ - this means that F_{b} and E are isogeneous.

Sources: Friedman, Algebraic Surfaces and Holomorphic Vector Bundles; Dürr, Fundamental groups of elliptic fibrations and theinvariance of the plurigenera for surfaces with odd first Betti number.

IX (6)
Step I: WLOG D is effective.
By Riemann-Roch, $h^{0}(D)+h^{0}(-D) \geqslant 2$. Thus, (if there exists at least one smooth rational curve), obviously $h^{0}(D) \geqslant 2$. Therefore we can WLOG assume that D is effective.

Step II: D is nef.
Firstly, note that if D is effective and $D . C \geqslant 0$ for all rational curves then D is nef, i.e. $D . E \geqslant 0$ for every effective divisor E. Indeed, it suffices to check this when E is an irreducible curve. But then if $g(E) \geqslant 1$, then by genus formula $E^{2} \geqslant 0$ and thus if $D=n E+D^{\prime}$ for $n \geqslant 0, D^{\prime}$ not containing E. Thus $D \cdot E=n E^{2}+D^{\prime} . E \geqslant 0$.

Step III: $|D|$ has no fixed part.
Let Z, M be the fixed and mobile part of D. Note that $0=D^{2}=D . Z+D \cdot M$. But $D . Z, D . M \geqslant 0$ (since Z, M are effective and D is nef). Thus $D \cdot Z=D \cdot M=0$. But $0=D \cdot M=M^{2}+Z \cdot M$, and since $M^{2}, Z \cdot M \geqslant 0$ (as M is mobile), $M^{2}=Z . M=0$. But $0=D^{2}=M^{2}+Z^{2}+2 Z \cdot M=2 Z . M$ and thus $Z^{2}=0$. Assume to the contrary that $Z \neq 0$. By Riemann-Roch, $h^{0}(Z)+h^{0}(-Z) \geqslant 2$, and thus (since $\left.Z>0\right) h^{0}(Z) \geqslant 2$. But Z is the fixed part of $|D|$, and thus $h^{0}(Z) \leqslant 1$! Contradiction proves that $Z=0$.

Step IV: $|D|$ is base point free.
$|D|$ has no fixed part, and thus the number of its fixed points is $\leqslant D^{2}=0$.
Step V: $D \sim k E$ for an elliptic curve E and $k \geqslant 1$.
Consider now the morphism $\phi: S \rightarrow \mathbb{P}^{N}$, defined by D. Note that since $D^{2}=0$, its image must be a curve (if its image was a surface, we would obtain a contradiction by Hodge index theorem, cf. Corollary VIII.5). Let $S \rightarrow C \rightarrow C^{\prime} \subset \mathbb{P}^{N}$ be the Stein factorisation of ϕ, where $C \rightarrow C^{\prime}$ is of degree $k \geqslant 0$. Let E be the generic fiber of $S \rightarrow C$. Then E is smooth, $E^{2}=0$ and by the genus formula $g(E)=\frac{1}{2} E^{2}+1=1$. Thus $D \sim k E$ and the proof follows.

Step VI: $D^{2}=0, D \nsim 0 \Rightarrow S$ is elliptic.

Method I:

Lemma: ("Weyl chambers") Let V be an Euclidean space with an indefinite bilinear form $\Phi(X, Y)$ of signature $(1, \operatorname{dim} V-1)$. Let $T \subset V$ be a finite subset and let:

$$
\mathcal{C}:=\left\{x \in V: \Phi(x, t) \geqslant 0 \forall_{t \in T}\right\} .
$$

Suppose that $\mathcal{C} \neq \varnothing$. Let $s_{t}(x):=x+\Phi(x, t) t$ (reflection around $\left.\Phi(x, t)=0\right)$. Then for any $x \in V$, there exists $s \in\left\langle s_{t}: t \in T\right\rangle$ such that $s(x) \in C$.
Proof: Note that \mathcal{C} is a cone in V. Thus it is given by finitely many inequalities, in particular we may assume that T is finite. The hyperplanes $(\Phi(x, t)=0)_{t \in T}$ divide V into finitely many chambers. By using the reflections, we can move x from one chamber to any other, in particular to \mathcal{C}. (It is a standard proof in the theory of root systems, cf. e.g. Kirillov - Introduction to Lie Groups and Lie Algebras, Lemma 7.26).

Let $V:=N S(S) \otimes_{\mathbb{Z}} \mathbb{R}, T=\{[C]: C$ is a rational curve on $S\}, \Phi\left(\left[D_{1}\right],\left[D_{2}\right]\right)=D_{1} . D_{2}$. Note that then:

- WLOG T is finite. (since nef cone is a cone, it can be given by finitely many inequalities - why??)
- $\mathcal{C} \neq \varnothing$, since the class of any ample divisor belongs to \mathcal{C}.

Then for some $w \in\left\langle w_{[C]}:[C] \in T\right\rangle, w(D) . C \geqslant 0$ for all $C \in T$. Moreover, if $E^{2}=0$ and $[C] \in T$ then:

$$
w_{[C]}(E)^{2}=(E+(E . C) C, E+(E . C) C)=E^{2}+2 \cdot(E . C)^{2}+(E . C) \cdot C^{2}=0+2 \cdot(E . C)^{2}+(E . C) \cdot(-2)=0 .
$$

Thus $w(D)^{2}=0$ and the proof follows by earlier steps.
Method II: suppose that C is a rational curve, such that $D . C<0$. Let $D^{\prime}:=w_{C}(D)$. Then $D^{\prime 2}=0$, $D^{\prime} . C=D \cdot C-2 D . C=-D . C$. Moreover, one shows that if $\operatorname{dim}|D| \geqslant 1$ then $\operatorname{dim}\left|D^{\prime}\right| \geqslant 1$. Finally, note that $0<H . D^{\prime}=H . D+(C . D) C . H<H . D$, so this procedure may be performed only finitely many times.

IX (7) We start by computing the Picard number of S, i.e. $\rho(S):=\operatorname{rank}_{\mathbb{Z}} N S(S)$. Note that $p_{a}(S)=p_{g}(S)-q(S)=0$ and thus $\chi\left(\mathcal{O}_{S}\right)=1$. But $\chi\left(\mathcal{O}_{S}\right)=h^{0}\left(\mathcal{O}_{S}\right)-h^{1}\left(\mathcal{O}_{S}\right)+h^{2}\left(\mathcal{O}_{S}\right)=1-q(S)+h^{2}\left(\mathcal{O}_{S}\right)=1+h^{2}\left(\mathcal{O}_{S}\right)$. By the exponential sequence we obtain:

$$
0 \rightarrow H^{1}\left(S^{a n}, \mathbb{Z}\right) \rightarrow H^{1}\left(S, \mathcal{O}_{S}\right) \rightarrow \operatorname{Pic}(S) \rightarrow H^{2}\left(S^{a n}, \mathbb{Z}\right) \rightarrow H^{2}\left(S, \mathcal{O}_{S}\right)=0
$$

Therefore:

$$
N S(S):=\operatorname{im}\left(\operatorname{Pic}(S) \rightarrow H^{2}\left(S^{a n}, \mathbb{Z}\right)\right)=H^{2}\left(S^{a n}, \mathbb{Z}\right)
$$

and $\rho(S)=b_{2}(S)$. By Noether formula we have:

$$
\chi\left(\mathcal{O}_{S}\right)=\frac{1}{12}\left(K_{S}^{2}+\chi_{t o p}(S)\right) \Rightarrow \chi_{t o p}(S)=12 \chi\left(\mathcal{O}_{S}\right)-0=12
$$

On the other hand, $\chi_{\text {top }}(S)=2-2 b_{1}(S)+b_{2}(S)=2-4 q(S)+b_{2}(S)$ and thus $b_{2}(S)=10$. We use now the following fact:

Fact: Let V be a \mathbb{Q}-vector space of dimension $\geqslant 5$. Every indefinite quadratic form on V admits a non-trivial zero.
(It is an easy corollary of Hasse principle for quadratic forms, cf. [Serre, A Course in Arithmetic, p. 38])

Consider now the quadratic form $D \mapsto D . D$ on $N S(S) \otimes \mathbb{Q}$. It is indefinite (of signature $(1,-1,-1,-1 \ldots,-1$) by Hodge index theorem). By the fact it admits a non-trivial zero, which yields us a divisor $D \in \operatorname{Div}(S), D^{2}=0$, $D \not \equiv 0$. Let $\pi: \widetilde{S} \rightarrow S$ be the associated covering by a K3-surface. Then $\pi^{*} D \nsim 0\left(\right.$ since $\left.\pi_{*} \pi^{*} D=2 D \nsucc 0\right)$ and $\left(\pi^{*} D\right)^{2}=D^{2}=0$. Thus \widetilde{S} is elliptic by the previous exercise. Let $\widetilde{S} \rightarrow \mathbb{P}^{1}$ be the elliptic fibration and suppose that it is given by a linear system P. Consider now the linear system $\pi_{*} P$. Note that its generic member is covered by an elliptic curve from P, so it is also an elliptic curve by Riemann-Hurwitz formula. Also, it is base point free. Indeed, if $x \in S$ would be a base point and $\pi^{-1}(x)=\left\{x_{1}, x_{2}\right\}$, then every member of P would pass through x_{1} or x_{2}. But then

$$
P=\left\{D \in P: D \text { passes through } x_{1}\right\} \cup\left\{D \in P: D \text { passes through } x_{2}\right\}
$$

- by the irreducibility of projective space, P would be equal to one of those sets, and would have a base point. Thus $\pi_{*} P$ gives a morphism into projective space, whose generic fiber is an elliptic curve.

X Surfaces of general type

X (1) (Stolen from Suzuki)
Note that there exists a composition of blow-ups $\varepsilon: \widetilde{S} \rightarrow S$ such that ϕ_{K} lifts to a morphism $\phi: \widetilde{S} \rightarrow S^{\prime}$. Let $K_{S}=Z+M$ be the fixed and mobile part of K_{S}. Then by the above assumption, the divisor $M^{\prime}=\varepsilon^{*} M-\sum_{i} a_{i} E_{i}$ (where $a_{i} \geqslant 1$ and E_{i} are exceptional curves on \widetilde{S}) is base point free and defines $\phi: \widetilde{S} \rightarrow S^{\prime}$. We consider two cases:
$1^{o} \phi_{K}(S)$ is a surface S^{\prime}.
Note that S^{\prime} is a surface of degree $\left(M^{\prime}\right)^{2}\left(\right.$ since $M^{\prime}=\phi^{*} H$ for a hyperplane section $\left.H\right)$ in $|K|^{*}=\left|\left(M^{\prime}\right)^{*}\right|$ and that:

$$
\left(M^{\prime}\right)^{2}=M^{2}-\sum_{i} a_{i}^{2} \leqslant M^{2}
$$

But $h^{0}(K)=p_{g}$ and thus $\operatorname{dim}|K|^{*}=\operatorname{dim}\left|M^{\prime}\right|^{*}=p_{g}-1$. Therefore by ex. VI. 2 (a) $M^{\prime 2} \geqslant 2\left(p_{g}-1\right)-2=$ $2 p_{g}-4$. On the other hand:

$$
K^{2}=Z^{2}+M^{2}+2 Z \cdot M=K \cdot Z+Z \cdot M+M^{2} \geqslant M^{2}
$$

(since S is of general type, K_{S} is nef by Corollary VI. 18 (2) - thus $K . Z \geqslant 0$. Moreover, $Z . M \geqslant 0$, since M is mobile and may be assumed to have no common components with Z). This ends the proof in this case.
$2^{o} \phi_{K}(S)$ is a curve C.
Idea: ϕ_{K} cannot be a morphism - otherwise $K^{2}=(n \cdot$ fiber $)=0$. Also we can estimate n (the degree of finite morphism in Stein factorisation).

Since $K^{2}>0$, we can WLOG assume that $p_{g} \geqslant 3$. Let $\widetilde{S} \rightarrow \widetilde{C} \rightarrow C$ be the Stein factorisation, where $\widetilde{C} \rightarrow C$ is a finite morphism of degree n.
Step I: $n \geqslant p_{g}-1$.
Observe that $M^{\prime}=F_{1}+\ldots+F_{n}$, where F_{i} are the connected components of the fiber of $\widetilde{S} \rightarrow C$ (if F is a fiber of $\widetilde{S} \rightarrow \widetilde{C}$ then $F \equiv{ }_{\text {alg }} F_{i}$). Consider now the exact sequence:

$$
0 \rightarrow \mathcal{O}_{\widetilde{S}} \rightarrow \mathcal{O}_{\widetilde{S}}(M) \rightarrow \mathcal{O}_{M}(M)=\bigoplus_{i} \mathcal{O}_{F_{i}}\left(M \cdot F_{i}\right)=\bigoplus_{i} \mathcal{O}_{F_{i}}\left(F_{i} \cdot F_{i}\right)
$$

and the associated long exact sequence:

$$
0 \rightarrow H^{0}\left(\mathcal{O}_{\tilde{S}}\right) \rightarrow H^{0}\left(\mathcal{O}_{\tilde{S}}(M)\right) \rightarrow \bigoplus_{i} H^{0}\left(\mathcal{O}_{F_{i}}\left(M \cdot F_{i}\right)\right) \rightarrow \ldots
$$

which yields:

$$
\sum_{i} \operatorname{dim} H^{0}\left(\mathcal{O}_{F_{i}}\left(M \cdot F_{i}\right)\right) \geqslant \operatorname{dim} H^{0}\left(\mathcal{O}_{\tilde{S}}(M)\right)-\operatorname{dim} H^{0}\left(\mathcal{O}_{\tilde{S}}\right)=p_{g}-1
$$

On the other hand,

$$
\operatorname{dim} H^{0}\left(\mathcal{O}_{F_{i}}\left(M \cdot F_{i}\right)\right)=\operatorname{dim} H^{0}\left(\mathcal{O}_{F_{i}}\right)=1
$$

(since $F_{i} \equiv_{n u m} F, F_{i}^{2}=0$) and thus $n \geqslant p_{g}-1$.
Step II: note that ε is proper and thus we have a pushforward on divisors. Let $F_{1}:=\varepsilon_{*} F$. Then $M \equiv_{a l g} n F_{1}$. And thus (since K is nef):

$$
K^{2}=K \cdot Z+K \cdot M \geqslant K \cdot M=n \cdot\left(K \cdot F_{1}\right) .
$$

Thus it suffices to show that $K . F_{1} \geqslant 2$ - then we will have:

$$
K^{2}=n \cdot\left(K . F_{1}\right) \geqslant 2 n \geqslant 2 \cdot\left(p_{g}-1\right)
$$

Step III: $K . F_{1} \geqslant 2$.
Suppose to the contrary that $K . F_{1} \in\{0,1\}$. If $K . F_{1}=1$ then:

$$
1=M \cdot F_{1}+Z \cdot F_{1}=n F_{1}^{2}+Z \cdot F_{1} .
$$

But $Z . F_{1}=\frac{1}{n} Z . M \geqslant 0$ and $M . F_{1}=\frac{1}{n} M^{2} \geqslant 0$ and thus we have two possibilities:
$1^{o} F_{1}^{2}=n=1, Z . F_{1}=0$.
In this case $1 \geqslant p_{g}-1$, i.e. $p_{g} \leqslant 2$ and we are done by previous remark.
$2^{o} \quad F_{1}^{2}=0, Z \cdot F_{1}=1$.
By genus formula: $2 \mid F_{1}^{2}+Z . F_{1}=1$, which yields contradiction.
If $K . F_{1}=0$ then $Z . F_{1}+M \cdot F_{1}=0$ and thus $F_{1}^{2}=0$. But, since $K_{S}^{2}>0$, by Hodge index theorem, $F_{1} \equiv_{\text {num }} a K$ for $a \in \mathbb{Q}$, and thus $0=F_{1}^{2}=a K^{2}$ implies $a=0$. But $F_{1} \equiv_{\text {num }} 0$ is impossible, since F_{1} is an irrducible curve! (e.g. if H is very ample then $H \cdot F_{1}>0$). This ends the proof.

X (2) Suppose that $S^{\prime} \rightarrow S$ is an étale cover of S of degree n. Then $\chi\left(\mathcal{O}_{S^{\prime}}\right)=n \chi\left(\mathcal{O}_{S}\right) \geqslant n$, i.e. $1-q\left(S^{\prime}\right)+p_{g}\left(S^{\prime}\right) \geqslant n$, which implies $p_{g}\left(S^{\prime}\right) \geqslant n-1$. Then by Noether inequality (Ex. X $\left.(1)\right) K_{S^{\prime}}^{2}=n K_{S}^{2}=n \geqslant 2 p_{g}\left(S^{\prime}\right)-4=2(n-1)-4$, i.e. $n \leqslant 6$. This implies that S has only finitely many étale covers (why???) and thus $\pi_{1}(S)^{a b} \cong H_{1}(S, \mathbb{Z})$ is finite, i.e. $0=b_{1}(S)=2 q(S)$. This shows also that $\# H_{1}(X, \mathbb{Z}) \leqslant 6$.
?????
X (3) Erratum: in \mathbb{P}^{6}.
Let $\left[a_{i j}\right]_{1 \leqslant i \leqslant 4,1 \leqslant j \leqslant 7} \in M_{4,7}(\mathbb{C})$ be any matrix of rank 9 and define:

$$
Q_{i}\left(X_{1}, \ldots, X_{7}\right):=\sum_{j=1}^{7} a_{i j} X_{j}^{2}, \quad S^{\prime}:=Q_{1} \cap \ldots \cap Q_{4}
$$

Let also $G=(\mathbb{Z} / 2)^{3}$ act on \mathbb{P}^{8} via:

$$
\begin{aligned}
(1,0,0) \cdot\left[X_{1}: X_{2}: \ldots: X_{7}\right] & =\left[-X_{1}:-X_{2}:-X_{3}:-X_{4}: X_{5}: X_{6}: X_{7}\right] \\
(0,1,0) \cdot\left[X_{1}: X_{2}: \ldots: X_{7}\right] & =\left[-X_{1}:-X_{2}: X_{3}: X_{4}:-X_{5}:-X_{6}: X_{7}\right] \\
(0,0,1) \cdot\left[X_{1}: X_{2}: \ldots: X_{7}\right] & =\left[X_{1}:-X_{2}:-X_{3}: X_{4}: X_{5}:-X_{6}:-X_{7}\right]
\end{aligned}
$$

One easily checks that for every $g \in G, g \neq 0$:

$$
g \cdot\left[X_{1}: X_{2}: \ldots: X_{7}\right]=\left[\varepsilon_{1} X_{1}: \varepsilon_{2} X_{2}: \ldots: \varepsilon_{7} X_{7}\right]
$$

where $\varepsilon_{i} \in\{ \pm 1\}$ and among ε_{i} there are three 1's and four -1 's, or three -1 's and four 1's. We will show that if $P \in S^{\prime}, g \in G, g \neq e$ then $g \cdot P \neq P$. Suppose the opposite. The equality $g \cdot P=P$ implies that at least three numbers from $\left\{X_{1}, \ldots, X_{9}\right\}$ are zero. Indeed, WLOG we can check it for $g=(1,0,0)$. If $\left[X_{1}: X_{2}: \ldots\right.$: $\left.X_{7}\right]=\left[-X_{1}:-X_{2}:-X_{3}:-X_{4}: X_{5}: X_{6}: X_{7}\right]$ then either $X_{5}=X_{6}=X_{7}=0$ or $\left(X_{1}, X_{2}, \ldots, X_{7}\right)=$ $\left(-X_{1},-X_{2},-X_{3},-X_{4}, X_{5}, X_{6}, X_{7}\right)$ and thus $X_{1}=X_{2}=X_{3}=X_{4}=0$.
Thus the squares of the non-zero coordinates of P satisfy the system of 4 linear equations $Q_{i}(P)=0$ for $i=1, \ldots, 4$. Since this system has 4 equations, 4 variables and rank 4 , all the solutions are zero. This ends the proof of the fact that G acts on S^{\prime} freely.

Note that $\mathcal{O}_{S}\left(K_{S}\right)=\mathcal{O}_{S}(4 \cdot 2-7)=\mathcal{O}_{S}(H)$ and thus $K_{S}^{2}=H^{2}=$ degree of S^{\prime} in $\mathbb{P}^{6}=2^{4}=16$. Since $S^{\prime} \rightarrow S$ is étale, $K_{S^{\prime}}=\pi^{*} K_{S}$ and (by Prop. I. 8 (ii)) $K_{S}^{2}=\frac{1}{8} K_{S^{\prime}}^{2}=2$. To compute $q(S)$, note that $q\left(S^{\prime}\right)=\operatorname{dim} H^{1}\left(\mathcal{O}_{S^{\prime}}\right)=0$ (since S^{\prime} is a complete intersection) and thus:

$$
q(S)=\operatorname{dim} H^{0}\left(\Omega_{S}\right)=\operatorname{dim} H^{0}\left(\Omega_{S^{\prime}}\right)^{G}=\operatorname{dim} H^{1}\left(\mathcal{O}_{S^{\prime}}\right)^{G}=0
$$

Finally, since $\chi\left(\mathcal{O}_{S^{\prime}}\right)=25 \cdot \chi\left(\mathcal{O}_{S}\right)$, we compute that $p_{g}(S)=0$. ???????
X (4) Let $\phi=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right] \in \operatorname{Aut}\left((\mathbb{Z} / 5)^{2}\right)$. Then the action of $g=(x, y) \in(\mathbb{Z} / 5)^{2}$ on $C \times C$ is as follows:

$$
g \cdot\left(\left[X_{1}: Y_{1}: Z_{1}\right],\left[X_{2}: Y_{2}: Z_{2}\right]\right)=\left(\left[\zeta^{x} \cdot X_{1}: \zeta^{y} \cdot Y_{1}: Z_{1}\right],\left[\zeta^{x+2 y} \cdot X_{2}: \zeta^{3 x+4 y} \cdot Y_{2}: Z_{2}\right]\right)
$$

Suppose that $g \cdot\left(P_{1}, P_{2}\right)=\left(P_{1}, P_{2}\right)$ with $g \neq(0,0)$. Consider the following possibilities:
$1^{o} Z_{1}, Z_{2} \neq 0$.
Then $X_{1}=\zeta^{x} \cdot X_{1}$ and thus $X_{1}=0$ or $x=0$. Analogously, $Y_{1}=0$ or $y=0, X_{2}=0$ or $x+2 y=0, Y_{2}=0$ or $3 x+4 y=0$. Note that $\left(X_{1}, Y_{1}\right),\left(X_{2}, Y_{2}\right) \neq(0,0)$. Thus we have two possibilities:
$\left.1^{\circ} \mathrm{A}\right) x=0$. Then $2 y=0$ or $4 y=0-$ both cases lead to $y=0$, which is a contradiction.
1° B) $y=0$. Then $x=0$ or $3 x=0-$ both cases lead to $x=0$, which is a contradiction.
$2^{o} Z_{1} \neq 0, Z_{2}=0$.
Then $X_{1}=0$ or $x=0$ and $Y_{1}=0$ or $y=0$. Moreover, $X_{2}=-Y_{2} \neq 0$ and $\left[X_{2}: Y_{2}\right]=\left[\zeta^{x+2 y} \cdot X_{2}:\right.$ $\left.\zeta^{3 x+4 y} \cdot Y_{2}\right]=\left[\zeta^{(x+2 y)-(3 x+4 y)} \cdot X_{2}: Y_{2}\right]$ and thus $(x+2 y)-(3 x+4 y)=0$, i.e. $-2 x-2 y=0$. Thus, if one of the numbers x, y is zero, the second is also. Contradiction!
$3^{o} Z_{1}=0, Z_{2} \neq 0$.
Then, analogously as in $2^{o}, x-y=0$ and, analogously as in $1^{o}, X_{2}=0$ or $x+2 y=0, Y_{2}=0$ or $3 x+4 y=0$.
Thus $x+2 x=0$ or $3 x+4 x=0-$ in both cases $x=y=0-$ contradiction!
$4^{o} Z_{1}=0, Z_{2}=0$.
Then, analogously as in $2^{o}, x-y=0$ and $(x+2 y)-(3 x+4 y)=0$, which leads to $x=y=0$. Contradiction! Thus the action of G on $C \times C$ is free, the quotient $(C \times C) / G$ is a smooth surface and $C \times C \rightarrow(C \times C) / G$ is étale of degree $\# G=25$.

By degree-genus formula $g(C)=6$. Note that $K_{C \times C}=p r_{1}^{*} K_{C}+p r_{2}^{*} K_{C}$ and thus

$$
K_{C \times C}^{2}=2\left(\operatorname{deg} K_{C}\right)^{2}=2 \cdot(2 \cdot(g(C)-1))^{2}=200
$$

Since $\pi: C \times C \rightarrow(C \times C) / G$ is étale, $K_{C \times C}=\pi^{*} K_{(C \times C) / G}$ and (by Prop. I. 8 (ii)) $K_{(C \times C) / G}^{2}=\frac{1}{25} \cdot K_{C \times C}^{2}=8$.
Now, analogously as in the proof of Theorem VI. 13 and using example VI. 12 (a):

$$
H^{0}\left(\Omega_{(C \times C) / G}^{1}\right)=\left(H^{0}\left(\Omega_{C}\right)^{\oplus 2}\right)^{G}, \quad H^{0}\left(\Omega_{(C \times C) / G}^{2}\right)=\left(H^{0}\left(\Omega_{C}\right)^{\otimes 2}\right)^{G}
$$

It is a standard fact that

$$
H^{0}\left(\Omega_{C}\right)=\left\{\frac{x^{i-1} d x}{y^{j}}:(i, j)=(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)\right\}
$$

(where $x=\frac{X}{Z}, y=\frac{Y}{Z}$). One checks easily that $\left(H^{0}\left(\Omega_{C}\right)^{\oplus 2}\right)^{G}=\left(H^{0}\left(\Omega_{C}\right)^{\otimes 2}\right)^{G}=0$ and thus $q=p_{g}=0$.
Other examples: ???
X (5) By X (1): $K^{2}=1 \geqslant 2 p_{g}-4$ and thus $p_{g} \leqslant 2$. Suppose that $S^{\prime} \rightarrow S$ is an étale cover of S of degree n. Then $\chi\left(\mathcal{O}_{S^{\prime}}\right)=n \chi\left(\mathcal{O}_{S}\right) \geqslant n$, i.e. $1-q\left(S^{\prime}\right)+p_{g}\left(S^{\prime}\right) \geqslant n$, which implies $p_{g}\left(S^{\prime}\right) \geqslant n-1$. Then by Noether inequality (Ex. X(1)) $K_{S^{\prime}}^{2}=n K_{S}^{2}=n \geqslant 2 p_{g}\left(S^{\prime}\right)-4=2(n-1)-4$, i.e. $n \leqslant 6$. This implies that S has only finitely many étale covers (why???) and thus $\pi_{1}(S)^{a b} \cong H_{1}(S, \mathbb{Z})$ is finite, i.e. $0=b_{1}(S)=2 q(S)$. This shows that $q(S)=0$.

X (6) Suppose to the contrary that image of $\phi_{2 K}$ is a curve C. Let $2 K=Z+M$ be the decomposition into fixed and movable part. There exists a composition of blow-ups $\epsilon: \widehat{S} \rightarrow S$ such that $\phi_{2 K}$ lifts to a morphism $\phi: \widehat{S} \rightarrow C$. In other words, the system $|\widehat{M}|$ has no base points, where $\widehat{M}:=\epsilon^{*} M-\sum_{i} a_{i} E_{i}, a_{i} \geqslant 0, E_{i}-$ exceptional curves. Let $\widehat{S} \rightarrow B \rightarrow C$ be Stein factorisation, where $B \rightarrow C$ is of degree n and B is smooth. Then $\widehat{M}=\sum_{i} F_{i}$, where F_{i} are fibers of $\widehat{S} \rightarrow C$ and $F_{i} \equiv{ }_{\text {alg }} F$ (where F is a generic fiber of $\widehat{S} \rightarrow B$). Note that $g\left(F_{i}\right) \geqslant 2$ (otherwise S would be elliptic or ruled). We start by computing n.

By taking the long exact sequence of

$$
0 \rightarrow \mathcal{O}_{S} \rightarrow \mathcal{O}_{S}(M) \rightarrow \bigoplus_{i} \mathcal{O}_{F_{i}} \rightarrow 0
$$

(?????) and noting that $h^{0}(M)=h^{0}(2 K)=($ by Riemann-Roch $)=p_{g}(S)+1$, we see that $n=p_{g}(S)$.
Note that by adjuntion formula, $|K+F|$ induces canonical linear system on F. But canonical system on any smooth curve of genus $\geqslant 2$ is very ample - thus the map defined by $|K+F|$ gives an embedding of F into projective space. We will prove that $K+F \leqslant 2 K$. Then it will follow that the map defined by $|K+F|$ factors via the map defined by $|2 K|$:

This leads to a contradiction, since F is contracted by $\phi_{2 K}$ and $\left.\phi_{K+F}\right|_{F}$ is an embedding. Consider two cases:
(a) Suppose that $p_{g}(S) \geqslant 2$. To show $K+F \leqslant 2 K$, it suffices to show that $K+F \leqslant 2 K$. But $n F \leqslant 2 K$, and thus $K+F \leqslant\left(1+\frac{2}{n}\right) K \leqslant 2 K$.
(b) Suppose that $p_{g}(S)=1$. Then $2 K=Z+F$. Thus $F \leqslant K$ (if F is contained in the divisor $2 K$, then also in $K)$. Therefore $K+F \leqslant 2 K$.

This ends the proof.
TODO: check??? F and $F_{i} \Rightarrow$??

