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Part of solutions is ”stolen” from Fumiaki Suzuki’s ”Solutions Of Exercises In Complex Algebraic Surfaces”.

II Birational maps

II (1) Let P be a point of multiplicity m on C. Let ε : rS Ñ S be the blow-up at P . Then rC � ε�C �mE and thus by
genus formula:

parp rCq � 1�
1
2
rC.p rC �K

rSq

� 1�
1
2
pε�C �mEq.pε�C �mE � ε�KS � Eq

� 1�
1
2
pC2 �KS .C �m2 �mq

� parpCq �
1
2
m � pm� 1q.

Thus blowing up strictly decreases the arithmetic genus and after finitely many steps our curve will be smooth.

II (2) (a) • ad. equality m � pC.E:pC � π�C �m. Thus m. pC � E.π�C �mE2 � m.

• ad. inequality mxp pC X Eq ¥ mxp pCq:
let f, g be the local equations of pC and E at x. Let M � mxp pC X Eq; then f P mMx . In particular,
pf, gq � mMx and:

mxp pC X Eq � dimkO pS,x{pf, gq ¥ dimkO pS,x{m
M
x �M.

(b) Let r, s be the multiplicities of C and C 1 at p, respectively. Recall that if π is a blow-up at p, π�C � rC� rE,
π�C 1 � rC 1 � sE. Thus:

rC. rC 1 � pπ�C � rEq.pπ�C 1 � sEq � π�C.π�C 1 � rπ�C.E � sE.π�C 1 � rsE.E � C.C 1 � 0� 0� rs.

Keep blowing up the surface at all intersection points of C and C 1 over p until C and C 1 do not meet
transversally at all those points. Let Cn :� rCn�1, C 1

n :� rC 1
n�1 be the images under those blow-ups. For

n " 0, we will obtain that Cn and C 1
n will meet transversally at all points above p and Cn, C 1

n do not posses
any multiple points above p. Thus Cn.C 1

n �
°
x 1 �

°
xmxpCnq �mxpC

1
nq (where the sum is take over all

x P Cn X C 1
n above p) and

mppC X C 1q �
¸
i

risi � Cn.C
1
n �

¸
pPCXC1

mppCq �mppC
1q

(the last sum including infinitely near points).

(c) Recall that in 2.1 we showed that after a blow-up with center in a point of multiplicity m we obtain a curverC with arithemtic genus:

parp rCq � parpCq �
1
2
m � pm� 1q.

Thus after finitely many blow-ups we arrive at normalization N , whose genus satisfies:

parpNq � parpCq �
¸
i

1
2
mi � pmi � 1q,

which ends the proof.
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II (3) (a) By Corollary II.12 (elimination of indeterminacy + universality property of blow-up) we have a diagram:

rS
S S1

f g

φ

where f , g are compositions of blow-ups. By blowing up rS further at the non-smooth points of the strict
transform of C, we can WLOG assume that rC, the strict transform of C on rS, is smooth. Then gp rCq is a
point, and thus rC2 � �1 and rC � P1. Thus C is birational to P1. Moreover, it is straightforward that:

rC � f�C �
¸
i

miEi �
ņ

i�1

E1
i

where Ei are the exceptional divisors coming from blow-ups of singular points of C and E1
i are the exceptional

divisors coming from blow-ups of smooth points of C (possibly including infinitely near points), i.e.

n � #tnumber of blow-ups in f , centered at smooth points of C (possibly including infinitely near points)u.

Thus �1 � rC2 � C2�
°
im

2
i�n. Moreover, if C is smooth, n ¡ 0 (since otherwise f would be an isomorphism

and φ would be defined on whole C).

(b) Let C2 �
°
im

2
i � 1 � n for n ¥ 0 (n ¡ 0 if C is smooth). Let f : rS Ñ S be the blow-up of S at all

singular points of C (including infinitely near points) and arbitrary n smooth points. Then rC is smooth,rC � f�C�
°
imiEi�

°n
i�1E

1
i and thus rC2 � C2�

°
im

2
i �n � �1 and thus by Castelnuovo criterion there

exists a morphism g : rS Ñ S1 such that gp rCq is a point. Thus it suffices to take φ � g�1 � f .

III Ruled surfaces

III (1) Recall that F 2 � 0 and rF � π�F � E (where π : rS Ñ S is a blow-up of S on an arbitrary point of F ). ThusrF 2 � F 2 � E2 � F 2 � 1 � �1 and we can contract rF by the Castelnuovo criterion: rS Ñ S1.

III (2)

Errata: a point of s P PpEq over x P C corresponds to a morphism:

E_ Ñ ix,�CÑ 0.

E1 should be defined by the exact sequence:

0 Ñ pE1q_ Ñ E_ Ñ ix,�CÑ 0.

Recall: here we define PpEq :� Spec SymE_, thus the points s P PpEq over x P C correspond to:

• elements of PpEx b κpxqq,

• lines in the C-vector space Ex b κpxq,

• morpshisms E_ Ñ ix,�CÑ 0.

Note moreover that any morphism of vector bundles f : E Ñ E1 induces a rational map Ppfq : PpEq 99K
PpE1q – it is well-defined out of the set:

tpx P C, ξ P PpEx b κpxqqq : fpξq � 0 in E1
x b κpxqu

We start by proving that E1 is a rank 2 vector bundle. Note that pE1q_ is locally free as a subsheaf of a locally
free sheaf. Moreover pE1q_ � E_ out of x and 0 Ñ pE1q_x Ñ E_

x Ñ C Ñ 0. If pE1q_x was a free Ox-module of
rank ¤ 1, then the quotient would contain a copy of Ox – contradiction. Hence pE1q_x is of rank 2 and E is a
vector bundle of rank 2.

Let h : E Ñ E1 be the dual of the inclusion pE1q_ Ñ E_. We’ll show that:
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(A) Pphq is an isomorphism out of F :� p�1pxq,

Pf: By definition of E1, E|U � E1|U , where U :� PpEqzF . Therefore Pphq is an isomorphism out of F .

(B) Pphq : PpEq Ñ PpE1q is defined out of s and contracts F to a point,

Pf: we only need to check it over x. Recall that Pphq is defined as

PpEx b κpxqq Q ξ ÞÑ rhpξqs P PpE1
x b κpxqq,

i.e. it is well defined on a line ξ P Ex b κpxq, unless ξ � kerphx b κpxqq. Recall that we have the exact
sequence:

pE1q_x b κpxq
h_
Ñ E_

x b κpxq Ñ CÑ 0

or equivalently,
0 Ñ ξs Ñ Ex b κpxq Ñ E1

x b κpxq

where ξs is the line corresponding to s. Note that thus the dimension of the image of

I :� im
�
Ex b κpxq Ñ E1

x b κpxq
�

is one. Under h, every line in Ex b κpxq goes either to 0 (if this line is ξs, i.e. if it is a point corresponding
to s) or to I (if this line is not ξs). Thus Pphq is not defined at s and the image of F ztsu under h is the
point s1 P S1 corresponding to the line:

0 Ñ I Ñ E1
x b κpxq.

(C) PpE1q contains an ”additional” rational line p1�1pxq.

Pf: this is straightforward.

The properties pAq, pBq, pCq show that PpE1q � S.

III (3) By Corollary II.12, we can present the map φ : X 99K S as:

rX
X S

where rX Ñ X, X Ñ S are compositions of isomorphisms and blow-ups and rX Ñ X is composed of n � npφq

blow-ups. Let ε : rX Ñ X 1 be the last blow-up with the center P and exceptional divisor E � rX. Note that:

• the image of E in S is not a point – otherwise, the map X 1 99K X Ñ S and its inverse would have a single
indeterminancy point, which would contradict Lemma II.10,

• the image of E in S (denoted also E) is a fiber of S Ñ C. Indeed, it is a rational curve and the only rational
curves S contains, are the fibers (here we use the assumption C � P1).

• rX Ñ S must contain at least one blow-up on a point of (strict transform of) ES . Indeed, otherwise E would
have the same intersection number on rX (which is �1, since it is an exceptional divisor of a blow-up) and
on S (which is zero for any fiber).

Say that this blow-up was with center on s P E and that the exceptional divisor (or rather its strict
transform with respect to the next blow-ups) is F � rX.

Let rS be the blow-up of S at s and let t : S 99K S1 be the elementary transform of S at s. We want to show that
we have the following diagram:

X 1

X S S1
φ t
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This will end the proof, since then

npφ � tq � # (number of blow-ups in X 1 Ñ Xq � n� 1.

Note firstly, that since rX Ñ S contracts F , it must factor as rX Ñ rS Ñ S (Proposition II.8). Now consider the
birational map ψ : X 1 99K rX Ñ rS Ñ S1. Note that ψ is undefined at at most one point – P , the image of E.
But there doesn’t exist a curve C � S1 such that ψ�1pCq � P (otherwise, the strict transform of this curve onrX would be E, but E is contracted on S1). Thus, by Lemma II.10, the map ψ is defined at P and we obtain a
morphism X 1 Ñ S1. This ends the proof.

III (4) Note that PGLp2,Kq � AutpPpEξqq, where ξ is the generic point of C. Thus, any ϕ P PGLp2,Kq corresponds
to ϕ : PpEξq Ñ PpEξq and this may be extended to ϕ : p�1pUq Ñ p�1pV q for some open sets U, V � C. Thus we
obtain a map:

PGLp2,Kq Ñ AutbpSq,

which is clearly injective. Choose a section s : C Ñ S. Then we have a map:

AutbpSq Ñ AutpCq, Ψ ÞÑ p �Ψ � s

(note that p �Ψ � s is a birational map C 99K C which easily implies – since C is smooth and projective – that
it extends to an automorphism C Ñ C). We want to show that φ :� p �Ψ � s satisfies p �Ψ � φ � p (cf. Remark
III.16). This follows by C � P1. Indeed, note that for any fiber F , ΨpF q is also a fiber, since it is isomorphic to
P1, and S doesn’t contain rational curves other than fibers (here we use C � P1). Thus, since x and s � ppxq lie
in the same fiber, Ψpxq and Ψ � s � ppxq lie also in the same fiber, i.e. p �Ψpxq � p �Ψ � s � ppxq, i.e. p �Ψ � φ � p.

Moreover, Ψ P AutbpCq maps to id P AutpCq iff p �Ψ � id. But then, after replacing C by an open subset U , we
obtain the commutative diagram:

P1 � U P1 � U

U

Ψ

i.e. Ψ P PGlp2,OpUqq, i.e. Ψ comes from PGlp2,Kq.

Fix φ P AutpCq. Suppose that V � C is an open set and U � ϕ�1pV q and that U , V are small enough so that
p�1pUq � P1 � U , p�1pV q � P1 � V . Let

Ψ :� pid, φq : p�1pUq � P1 � U Ñ P1 � V � p�1pV q

– then Ψ P AutbpSq and Ψ maps to φ. This proves the surjectivity and easily shows the splitting.

III (5)

Recall that a point s P S � PpEq lying over t P C corresponds to a surjective morphism:

ϕ : E_ Ñ it,�CÑ 0.

By ex. III (2) we want to compute E1 � pkerϕq_.

Suppose WLOG that s lies over t � r0 : 1s P P1. Note that any surjective morphism ϕ : E_ � O`Op�nq Ñ it,�C
is of the form aπ1 � bπ2, where pa, bq P C2zt0u and

π1 : O Ñ it,�Ot Ñ it,�pOt{ptq � it,�C

π2 : Op�nq Ñ it,�Op�nqt Ñ it,�pOp�nqt{ptOp�nqq � it,�C.

Let ϕ correspond to pa, bq. Note that for any quasicoherent sheaf F Ñ �M on ProjS, the morphisms

F Ñ ix,�Fx, F Ñ ix,�pFx{pxFxq

correspond to homomorphisms

M ÑMp, M ÑMp{pMp � FracpM{pq

of graded S-modules (where x corresponds to an ideal p and Mp denotes the homogeneous localisation, and
Frac – the homogeneous fraction field).
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In our case, S � Crx, ys and π1, π2 come from homomorphisms

S Ñ S{p and Sp�nq Ñ Sp�nq{p

which we will also denote by π1, π2 (where p � pyq). Note that we can identify Sp�nq with ynS or xnS. Moreover:

Sp�nqp{pSp�nqp � xnkrx, ysp{yx
nkrx, ysp � xnkpxq � kpxq � krx, ysp{ykrx, ysp � Sp{pSp.

Thus ϕ is given by:

ϕpApx, yq, xnBpx, yqq � Apx, 0q � xnBpx, 0q � aA� bxnB pmod yq P kpxq.

and kerϕ � rK, where:
K � tpA, xnBq P S ` xnS : aA� bxnB � 0 pmod yq.u

We consider the following three cases:

1o a � 0, b � 0.

In this case clearly K � yS ` xnS � Sp1q ` Sp�nq, i.e. rK � Op1q `Op�nq, i. e. E1 � Op�1q `Opnq, i.e.

S1 � PpOp�1q `Opnqq � PppOp�1q `Opnqq bOp1qq � PpO `Opn� 1qq � Fn�1.

2o b � 0.

In this case we have an isomorphism:

yS ` xnS � K

pyP, xnQq ÞÑ

�
1
a
yP �

b

a
xnQ, xnQ



i.e. E1 � Op1q `Opnq, i.e. S1 � PpE1q � PpE1 bOp�1qq � Fn�1.

Finally, we see that we have two cases:

• if s lies in the image of the section P1 Ñ Fn coming from the surjection O ` Op�nq Ñ O (this section is
denoted B in chapter IV), then S1 � Fn�1,

• if s R B, then S1 � Fn�1.

III (8)

(I guess that we want to classify ruled surfaces over C up to C-homeomorphism)

Lemma Let M be any compact oriented manifold of dimension 2. Then:

(a) We have an isomorphism of groups:

deg : complex line bundles on M Ñ Z

that coincides with the degree function for smooth projective algebraic curves over C

(b) We have an isomorphism of groups:

deg` dim : complex vector bundles on M Ñ Z` Z.

Thus the ring of vector bundles on M is isomorphic to Zrxs{px2q.

Pf:

(a)

By the above lemma, any vector bundle over C is isomorphic (as a complex vector bundle) to O ` Opnq for
n � degE or equivalently to Opmq ` Opm � εq for n � 2m � ε, ε P t0, 1u. We have: PpOpmq ` Opm � εqq is
C-isomorphic to PppOpmq`Opm� εqqbOp�mqq � P pO `Opεqq. It suffices to show now that P pO `Opεqq and
P pO `Opεqq are not C-homeomorphic. ?????

III (10) (solution stolen from Suzuki’s solutions)

We’ll start by showing that S must contain uncountably many lines.
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Lemma Let k � k be an uncountable field, and let X be a k-variety. Let pZnqn be a countable family of
proper closed subschemes of X. Then

�
i Zipkq � Xpkq.

Proof – I method: (MO 73743) by shrinking X, we can assume that it is affine. By Noether normalization
lemma, there exists a finite surjective morphism p : X Ñ Amk . Let Yi :� ppZiq. Then Amk pkq �

�
i Yipkq. It

suffices to show that this impossible by induction on m. For m � 1 this is straightforward. Note that Amk pkq
has uncountably many hyperplanes. Take a hyperplane H such that @iH � Yi. Then @iH � Yi and thus
H �

�
ipYi XHqpkq is a union of proper closed subvarieties. This is impossible by induction hypothesis.

Proof – II method: (only for k � C) the proof follows by using Baire categories theorem, since a
complete metric space (we can e.g. embedd X in Pn to get a metrics) cannot be a countable union of
nowhere dense sets.

We’ll consider two cases:

• Case I: qpSq ¥ 1

Let A :� AlbpSq, j : S Ñ A and note that dimA � qpSq ¥ 1. Note that AlbpP1q � pt, so all the rational
lines on S are contracted to points. Thus, if dim jpSq � 2, then j would contract infinitely many curves to
points. But this would contradict the following Lemma.

Lemma Let f : S Ñ S1 be a surjective morphism of surfaces. Then f contract only finitely many lines.
Proof: (cf. MSE, 3413803) By generic freeness, there is a closed subset Z such that for s P S1zZ,
dim f�1psq � dimS � dimS1 � 0. Note that f�1pZq is a closed set of dimension ¤ 1 and all of the
contracted curves are contained in it. But f�1pZq has finitely many irreducible components! This ends
the proof.

Thus dim jpSq � 1. By generic smoothness (???) at least one of the fibers of j must be isomorphic to P1

(???) and the proof follows by Noether–Enriques Theorem in this case.

• Case II: qpSq � 0.

Let H be a very ample divisor. Consider for every n P N the set An :� tC – rational curve : C.H �

nu. Then, by Pigeonhole Principle, there exists n P N such that An contains infinitely many curves. By
[Hartshorne, AG, ex. ???] the set An modulo numerical equivalence is finite and thus there exist C1, C2 P An,
C1 � C2. Thus, C2

1 � C1.C2 ¥ 0 (intersection product of two irreducible curves is the number of their
intersection points, counted with multiplicities). But then we conclude that S is rational just as in the proof
of Castelnuovo Theorem.

IV Rational surfaces

IV (1) • Step I: P � |h| is n-dimensional, i.e. h0pOphqq � n� 1.

Pf: note that Ophq � OFnp1q and thus p�Ophq � E � O `Opnq and:

h0pOphqq � h0pP1, p�Ophqq � h0pP1,O `Opnqq � n� 1.

• Step II: |h| is very ample on U :� FnzB

Step II A: h1ph� fq � 0

Pf: note that ph� fq.f � 1 and thus by [Hartshorne, AG, Lemma V.2.4] H1pOph� fqq � H1pP1, p�pOph�
fqqq. But by projection formula:

p�pOph� fqq � pOP1 `OP1pnqq bOP1p�1q � OP1p�1q `OP1pn� 1q

(f may defined as p�pany pointq). Thus h1ph�fq � h1pP1,OP1p�1q`OP1pn�1qq � 0. Cf. also Hartshorne,
pf. Theorem V.2.17., Case IV.

Step II B: separating points P � Q, P,Q R B.

– if P , Q are not on one fiber, we can take b � nf P |h| for fiber f containing P , but not Q. Then
P P b� nf , Q R b� nf .
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– suppose that P , Q are in one fiber f . Note that h.f � 1 and thus the linear system |h| restricted to
f � P1 is very ample and we can find a divisor separating P and Q. But the restriction of |h| to f , i.e.
the map:

H0pOphqq Ñ H0pOphq bOf q

is surjective. Indeed, the cokernel is H1pOph�fqq (this follows from the exact sequence 0 Ñ Oph�fq Ñ
Ophq Ñ Ophq bOf Ñ 0) and this is zero by Step II A.

• Step II C: separating a points P R B and a tangent vector v P TPFn.

– let f be the fiber of P . If v R TP f , then b� nf P |h|, P P b� nf , v R TP pb� nfq.

– If v P TP f , we can repeat the reasoning from Step II B.

• Step III: |h| is base point free,

Pf: since |h| is very ample outside of B, we only have to check that for every x P B there exists D P |h|

such that x R D. But we can take D :� h, since h.b � 0.

• Step IV: the image of B via f is a single point p.

Pf: it suffices to show that the image of |h� b| Ñ |h|, D ÞÑ D � b is of codimension 1 in |h|. Indeed, then
for any x P B, the hypersurface

fpxq :� D P |h| that contain x P |h|_

must be |h� b|. We have: |h� b| � |nf | and we are left with computing h0pnfq. Using:

– the exact sequence 0 Ñ Oppm� 1qfq Ñ Opmfq Ñ Of bOpmq Ñ 0 for m ¥ 0,

– H1pOP1ptqq � 0 for t   0,

– H1pOFnq � qpFnq � 0,

one can show that h1pmfq � 0 for every m ¥ 0 and that h0pmfq � m. Thus h0pnfq � n and |h � b| is
indeed of codimension 1 in |h|.

• Step V: |h| cut to the section h is the linear system OP1pnq on P1. Thus the image of h by f is the line P1

embedded via Veronese embedding.

Pf: indeed, the degree of the divisor h cut to the section h is h.h � n.

• Step VI: |h| cut to any fiber is the linear system OP1pnq on P1. Thus the image of any fiber is a line
through p.

Pf: indeed, the degree of the divisor h cut to f is h.f � 1.

• Summary: f is well defined, an embedding out of B, contracts B to one point, fphq is P1 embedded via
Veronese embedding and the image of any fiber is a line through p. Therefore fpFnq must be a cone over
fphq.

IV (3) Choose any n� 1 distinct points on S and let H be the hypersurface containing them. Then by Bezout theorem
H X S ¤ degS � degH � pn� 2q or S � H. We clearly see that only the second possibility can hold.

V Castelnuovo’s Theorem

V (1) Note that for any n, �nK is ample and thus H0pnKq � 0 for every n ¥ 0 (trivial case of Kodaira vanishing).
Thus Pn � 0 for every n and S is rational by Castelnuovo theorem. Let Smin be the minimal model of S. Then
Smin � P2 or Smin � Fn for n � 1. Note that g : S Ñ Smin is composition of r blow ups for some r, with
exceptional divisors E1, . . . , Er. Then KS � g�KSmin�

°
iEi. Suppose to the contrary that Smin � Fn for n ¥ 2.

Then KSmin � �2h�pn�2qf . Consider pB, the strict transform of B � h�nf . Note that pB � g�h�g�nf�
°
iPI Ei

(we sum over the exceptional divisors of blow-ups with center in B). On the other hand, since �KS is ample,
by Nakai-Moscheizon criterion, �KS . pB ¡ 0, i.e.:

�KS . pB � p2g�h� pn� 2qg�f �
¸
i

Eiq.pg
�h� g�nf �

¸
iPI

Eiq � 2n� 2n� pn� 2q �#I ¤ 2� n

which is non-positive.
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Thus Smin � P1 � P1 or Smin � P2.

Suppose that Smin � P2, i.e. S is P2 with r points blown. Then KS � π�KSmin �
°r
i�1Ei � �3L �

°r
i�1Ei.

Thus:
0   p�KSq.Ei � �E2

i �
¸
j�i

Ei.Ej � 1��
¸
j�i

Ei.Ej ,

which implies that Ei.Ej � 0 (i.e. the r points are not infinitely near points, but points of P2). Moreover:

0   K2
S � 9� r

which implies that r ¤ 8. Suppose that the r points do not lie in general position, i.e. either t ¥ 3 (e.g. P1, . . . Pt)
of them lie on a common line M or t ¥ 6 of them (e.g. P1, . . . , Pt) on a common cubic C. Then:

p�KSq.�M � p�KSq.pπ
�M �

ţ

i�1

Eiq � p3L�
ŗ

i�1

Eiq.pπ
�M �

ţ

i�1

Eiq � 3L.M � t � 3� t ¤ 0

or

p�KSq. rC � p�KSq.pπ
�C �

ţ

i�1

Eiq � p3L�
ŗ

i�1

Eiq.pπ
�M �

ţ

i�1

Eiq � 3L.C � t � 6� t ¤ 0

– contradiction. Thus in this case S is isomorphic to P2 with r ¤ 8 points in general position blown.

Suppose now that Smin � P1 � P1.

????

V (3)

(This solution is stolen from Suzuki)

Step I: the group tϕ P AutPn : ϕpSq � Su is finite.

Proof:

Lemma: Suppose that an algebraic group G acts on a variety S. Then the function:

s ÞÑ dimGs

is lower-semicontinuous. In particular, for s in a dense open subset dimGs � maxtdimGx : x P Su.
Pf: consider the diagram:

pG�S Sq �S�S S S

G� S S � S

p

∆

q

where q : G� S Ñ S � S, qpg, sq � pgs, sq. Then one easily checks that Stabpsq � p�1pSq and thus:

dimGs � dimG� dim Stabpsq � dimG� dim p�1pSq.

It suffices to note that the dimension of the fiber is upper-semicontinuous.

Let G be the identity component of the algebraic group:

tϕ P AutPn : ϕpSq � Su

Suppose to the contrary that dimG ¡ 0. Note that the orbits of action of G on S are intersections of linear
subspaces of Pn with S. Moreover, they are connected, since G is. Let m � maxtdimGx : x P Su and consider
the following possibilities:

1o m � 0. In this case, Gs is a connected set of dimension 0, hence Gs � tsu. ????

2o m � 1. Then S is covered by rational curves (since G acts linearly on S????) and thus by exercise III.10,
S is ruled, contradiction.
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3o m � 2. Then Gs is a dense open subset of S and (since the preimage of G under Glpn,Cq Ñ PGlpn,Cq is a
linear group and any linear group over a perfect infinite field is unirational, cf. Springer, 13.3.10. Corollary)
S is unirational. Thus, by Corollary V.5, S is rational, contradiction.

Step II: AutS is as claimed.

Proof: Recall that AutpSq (for S – projective) is a projective variety and thus Aut0pSq is an abelian variety.
Let H be a very ample divisor associated to the embedding S � Pn. Consider the morphism

Φ : Aut0pSq Ñ PicpSq, ϕ ÞÑ ϕ�H �H.

Note that since Aut0pSq is connected, its image must lie in the connected component of PicpSq, i.e. Pic0pSq �

AlbpSq, which is of dimension q. Now, Aut0pSq Ñ Pic0pSq is a morphism between abelian varieties which maps
identity to identity, and thus it is an homomorphism. Thus ΦpAut0pSqq is an abelian variety of dimension ¤ q.
Moreover the kernel of Φ consists of those ϕ, which commute with φ|H|. We can extend each such ϕ to an
automorphism of Pn � |H|_, since ϕ induces an isomorpshism of |H|. Thus:

ker Φ � tϕ P AutPn : ϕpSq � Su

is finite by Step I and the map Aut0pSq Ñ imΦ is an isogeny of abelian varieties, i.e. Aut0pSq is an abelian
variety of dimension ¤ q. This ends the proof.

V (4) Note that we can identify H0pOP1pnqq with HompOP1 ,OP1pnqq. Note that any element pϕ, cq of

T :� HompOP1 ,OP1pnqq � C�

corresponds to an automorphism Γpϕ,cq of the bundle E :� OP1 `OP1pnq:

px, yq ÞÑ pcx, y � ϕpxqq

that fixes 0`Opnq � E . In this way we obtain a morphism

Fn � PpEq
Γ�
pϕ,cq
ÝÑ PpEq � Fn,

which easily provides us a homomorphism T Ñ AutFn.

Let Γ P AutFn be now arbitrary. Note that Γpbq � b (since b is the unique curve on Fn with negative self-
intersection) and thus we obtain a morphism AutFn Ñ Aut b � AutP1 � PGlp2,Cq.

Note that the map AutFn Ñ Aut b is onto, since it has a natural section – ϕ P Aut b � AutP1 maps to

PpEq ϕ
�

Ñ Ppϕ�Eq � PpEq (???).

????

V (5)

Erratum: I don’t think the hint with D ÞÑ D � pδ.Dqδ is useful, since this is an involution.

(Second part of the solution is based on R. Friedman, Algebraic Surfaces and Holomorphic Vector Bundles, Ch.
5, Prop. 22)

If S contains infinitely many lines then it is rational:

Let f : S Ñ Smin be the morphism to the minimal model and suppose that it is a composite of n blow
ups with exceptional divisors E1, . . . , En. Note that f contracts finitely many curves C1, . . . , Cm. Let C be an
exceptional curve different from the Ei’s and Ci’s. Then fpCq is a rational curve with fpCq2 ¥ 0 (since each
blow-up decreases the self-intersection and fpCq2 � �1 – Smin doesn’t contain exceptional curves). Consider
the morphism α : Smin Ñ AlbpSminq. Note that it contracts infinitely many curves (all the fpCq’s) and thus (cf.
exercise III (10), Lemma), dimαpSminq   2.

We conclude that Smin is ruled or rational as in the end of the proof of Theorem V.19:
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We have fpCq2 ¥ 0, since C2 � �1 and each blow-up increases this value. Note that each blow-up descreases
KS .C � �1 and that each blow-up decreases this value, thus KSmin .fpCq ¤ �2. Let F be the fiber of α containing
fpCq. Then Lemma III.19 shows that F � r � fpCq. Then F 2 � 0 and thus fpCq2 � 0. By the genus formula, if
F 1 is a general fiber, we have:

2gpF 1q � 2 � F 1pKSmin � F 1q ¤ �2r

and thus r � 1, F � C. Thus Smin is ruled by Noether–Enriques.

Suppose to the contrary that S is ruled over a curve D, gpDq ¡ 0, i.e. Smin � PDpEq. Then fpCq must lie in a
fiber (since there are no non-constant morphisms P1 Ñ D). But thus there are finitely many choices for fpCq –
these must be the fibers in which we performed the n-blow-ups in f ! Thus there are finitely many choices for C
(which is a strict transform of fpCq). The contradiction means that Smin is ruled over P1.

Existence of S: let P be a pencil of irreducible cubic curves on P2 (i.e. take cubic equations f1, f2 and let
P :� tλ1f1 � λ2f2u) and let p1, . . . , p9 be the base points of P (i.e. the intersection of f1 � 0 and f2 � 0). Let
also S be the blow-up of P2 at p1, . . . , p9. Then:

(a) KS � �3L �
°9
i�1Ei, where L is the strict transform of any line in P2 and Ei are the exceptional curves

at pi’s.

(b) �KS � rC for any C P P . Indeed, rC � π�C �
°9
i�1Ei � 3L�

°9
i�1Ei.

(c) �KS is nef. Indeed, since �KS � rC, it suffices to check that p�KSq
2 ¥ 0. This is immediate:

p�3L�
9̧

i�1

Eiq
2 � 9� 9 � 0.

(d) If C is an irreducible curve and C.p�KSq � 0 then C �num �qKS for some q P Q�. Indeed, by Hodge
index theorem, since �KS is nef and C P x�KSy

K, we have C2 ¤ 0. If C2   0, then by genus formula we
would obtain C2 � �2, gpCq � 0. But this is impossible:

Lemma: S doesn’t contain rational curves with C2 � �2.
Proof: note that C is a strict transform of a plane curve of degree d. Then C � dL �

°9
i�1 aiEi for

ai ¥ 0. Then:
0 � C.K � �3d�

¸
i

ai

�2 � C2 � d2 �
¸
i

a2
i

i.e.
°
i a

2
i � p 1

3

°
i aiq

2 � 2. Let r :� #ti : ai � 0u. Then by Cauchy–Schwarz inequality:
°
i a

2
i ¥

1
r p
°
i aiq

2 and

�2 ¤
1
9
pr � 9q �

¸
i

a2
i .

If ai P t0, 1u for all i, then 3d � r and d2 � r � 2. Thus d2 � 3d � 2 � 0 and d P t1, 2u. Thus C is
a transform of a line or a quadric and either three of points p1, . . . , p9 would have to lie on a line, or
six of points p1, . . . , p9 would have to lie on a quadrics. Contradiction! Now suppose that ai ¥ 2 for at
least one i. Then 1

9 pr� 9qp
°
i a

2
i q ¤

1
9 pr� 9qpr� 3q, which is less then �2 for r � 8. In the case r � 8,

one has to perform easy but tedious analysis. See Friedman, p. 127 for the full proof.

Thus C2 � 0, which implies by Hodge Index Theorem that C �num �qKS for some q P Q�.

Claim: Any divisor D P DivpSq with D2 � �1, KS .D � �1 is equivalent to an exceptional curve.

Proof of claim 1: We start by showing that it is equivalent to an effective divisor. By Riemann–Roch:

h0pDq � h0pK �Dq ¥ χpOSq �
1
2
pD2 �KS .Dq � 1� 0.

Note that K � D is not equivalent to an effective divisor, since pK � Dq. rC � pK � Dq.p�Kq � �1. Thus
h0pDq ¥ 1, |D| � ∅ and WLOG D �

°
i niCi is effective. Note that 1 � p�Kq.D �

°
i nip�Kq.Ci. Since
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p�Kq.Ci ¥ 0 and by previous remarks, WLOG D � C1 �
°
i¡1 niCi, where p�Kq.C1 � 1, Ci �num mip�KSq

for mi P Q� and D �num C1 � n � p�KSq. Thus we have:

�1 � D2 � C2
1 � 2n � p�KSq.C1 � C2

1 � 2n � rC.C1 � C2
1 � 2n,

but by genus formula C2
1 ¥ �2 and thus n � 0, C2

1 � �1, gpC1q � 0. This shows the claim.

Claim 2: exceptional curves are in bijection with the lattice xrKSsy
K{xrKSsy (where rKSs is the numerical class

of KS).

Proof of claim 2: fix an exceptional curve, e.g. E1. We claim that the bijection is given by:

exceptional curves Ø xrKSsy
K{xrKSsy

C ÞÑ rC � E1s

D � E1 � nK Ð[ rDs,

where n � 1
2D

2 � D.E1 (note that 2|D2 by the genus formula). Indeed, by Claim 1, exceptional curves are
in bijection with divisor classes C such that C2 � C.K � �1. Thus if C is such a class then pC � E1q.K �

�1� p�1q � 0. The other way around, if rDs P xrKSsy
K{xrKSsy then pD � E1 � nKq.K � E1.K � �1 and:

pD � E1 � nKq2 � D2 � E2
1 � n2K2 � 2D.K � 2nE1.K � 2D.E1 � D2 � 1� 0� 0� 2n� 2D.E1,

which equals to �1 iff n � 1
2D

2 �D.E1.

End of the proof: ρpSq � 10 and thus xrKSsy
K{xrKSsy � Z8 Note that ρpP2q � 1 and each blow-up increases

ρ by one. Thus ρpSq � 1� 9 � 10. This means that S has infinitely many exceptional curves.

(Note that this does not contradict Hartshorne, AG, Corollary V.5.4. - only finitely many of those curves are
contracted by the map S Ñ P2; the image of the rest of them are some rational curves)

VI Surfaces with pg � 0, q ¥ 1

VI (1) By the genus formula:
0 � 2gH � 2 � H2 �H.K.

Thus H.K � �H2   0 (since H2 equals the degree of S in Pn, it is positive) and by Corollary VI.18 (2), S must
be ruled.

Suppose to the contrary that qpSq ¥ 2. Then we obtain a morphism ϕ : S Ñ C to a smooth projective curve C of
genus qpSq (by composing S Ñ Smin with Smin Ñ C – recall that Smin is geometrically ruled). Any morphism
H Ñ C must be constant, since gpHq ¤ gpCq. Thus H is contained in a fiber f of ϕ. But f2 � 0 (since any two
fibers are algebraically equivalent) and on the other hand f �

°
i nifi � nH for n ¡ 0, ni ¥ 0, implying f2 ¡ 0.

Contradiction means that qpSq ¤ 1.

If qpSq � 1 then S is ruled over a curve of genus 1, i.e. an elliptic curve.

Suppose finally that qpSq � 0. Note that then χpOSq � 1� papSq � 1� qpSq� pgpSq � 1. Moreover, by Kodaira
vanishing h1pK �Hq � h2pK �Hq � 0. Thus, by Riemann–Roch:

h0pK �Hq � χpOpK �Hqq � χpOSq �
1
2

�
pH �Kq2 � pH �Kq.K

�
� 1�

1
2
pH �Kq.H � 1� 0.

Thus |K �H| � ∅. Let D P |K �H| – then D.H � pK �Hq.H � 0 and on the other hand D.H is the degree
of D, since H is very ample. Thus D � 0 and K �H � 0. By ex. V.21(2) this is possible iff S is Sd or S18.

Sd and S18 have elliptic sections: note that K �H � 0 automatically implies that 2gH � 2 � H.pH �Kq � 0
and gH � 1.

Example of elliptic ruled surface with elliptic sections: ??? ??

VI (2)
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Remark: (b) is not true.

Let H be a smooth hyperplane section of S. Consider the exact sequence:

0 Ñ OS Ñ OSpHq Ñ OHpHq Ñ 0 p�q

and note that OHpHq � OHpDq for an effective D P DivpHq, degD � H.H (one can denote D as H �H). By
taking the long exact sequence of p�q we obtain:

0 Ñ H0pOSq Ñ H0pOSpHqq Ñ H0pOHpDqq Ñ H1pOSq Ñ H1pOSpHqq Ñ H1pOHpDqq Ñ . . . .p��q

Observe that H0pOSq � k, dimH1pOSq � q and dimH0pOSpHqq � n�1 (since the morphism given by the very
ample divisor H embedds S into Pn and the image is not contained in any hyperplane). Note also that by the
genus formula:

2gH � 2 � H2 �H.K

and thus: p2gH � 2q � degD � H.K.

Finally, note that the degree of S in Pn is d � degDp� H.Hq (cf. Hartshorne, exercise V.1.2).

(a) Note that H.K ¥ 0 by Corollary VI.18 (2) and thus 0 ¤ degD ¤ 2gH � 2. Thus, by Clifford theorem and
by p��q:

n� 1 � dimH0pOSpHqq ¤ H0pOSq � dimH0pOHpDqq � 1� dimH0pOHpDqq ¤ 1� p
1
2

degD � 1q

which leads to degD ¥ 2n� 2.

Suppose that equality holds. Then, by Clifford’s theorem (cf. Hartshorne, AG, Theorem IV.5.4), we have
three cases to consider:

1o D � 0 – this is impossible, since d � degD ¡ 0.

2o D � KH – then degD � 2gH � 2 and (by the above formulas) KS .H � 0. Suppose that E P |nKS |

for n ¥ 0. Then E.H � nKS .H � 0. Since H is very ample and E – effective, this is possible only if
E � 0. Thus |nKS | � t0u or |nKS | � ∅ for all n. The second case implies that S is ruled (Corollary
VI.18 (4)), so we are left with KS � 0.

3o D is a degree 2 divisor on the hyperelliptic curve H with h0pDq � 2. Then 2 � degD � 2n � 2 and
n � 2. Thus we have S � P2 and S � P2, which is false.

(b) This is not true. See Suzuki’s solutions for a counterexample.

VI (3) Note firstly that if S is bielliptic, then 12K � 0 and h0p12Kq � h0pOSq � 1.

Suppose now that S is not bielliptic. We consider two cases, just as in Theorem VI.13.

1o (F is not elliptic)

By the proof of Proposition VI.15:

P12pSq � maxtdegL12 � 1, 0u, where degL12 � �24�
¸
P

r12 � p1� 1{eP qs

and where eP are ramification indicies of F Ñ F {G. Let r be the number of ramification points and suppose
e1 ¥ e2 ¥ . . .. By Riemann–Hurwitz formula:

°
ip1� 1{eiq ¥ 2. Again, we divide into subcases:

(a) r ¥ 5.

Then, for any ramification point r12 � p1� 1{eP qs ¥ 6 and P12pSq ¥ 6� 1 � 7.

(b) r � 4.

If e1 ¥ 3 then r12 � p1� 1{e1qs ¥ 8 and r12 � p1� 1{e1qs ¥ 6 for i � 2, 3, 4 and thus P12pSq ¥ 3. Suppose
now that e1 � . . . � e4 � 2. Then, by Riemann–Hurwitz 2 ¤ 2gpF q � 2 � �2n � 4 and thus n � 1 and
B Ñ B{G is an isomorphism, contradiction.

(c) r � 3.

Recall that
°
ip1� 1{eiq ¥ 2, i.e. 1 ¥ 1

e1
� 1

e2
� 1

e3
, which implies that either e1, e2, e3 ¡ 3 or pe1, e2, e3q P

tp3, 3, 3q, p2,¥ 3,¥ 4qu. One easily checks that in each of those cases P12pSq ¥ 2.
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(d) r ¤ 2 is impossible, since
°
ip1� 1{eiq ¥ 2.

2o (B is not elliptic)

By the proof of Proposition VI.15:

P12pSq � h0pB{G,Dq, where D �
¸
P

r12 � p1� 1{eP qsP

and where eP are ramification indicies of B Ñ B{G. Note that since gpBq � gpB{Gq � 1, there must be
at least one ramification index eP0 ¡ 1, which implies that r12 � p1 � 1{eP0qs ¥ 6 and degD ¥ 6. Thus, by
Riemann–Roch:

P12pSq � h0pB{G,Dq � degD ¥ 6.

VI (4) (Errata: one should suppose that S admits a morphism to a non-rational curve?)

Suppose that p : S Ñ B is a surjective morphism. Then, we can assume that B is normal (by replacing B by
its normalization and using the universality property of normalization). Moreover, by Stein factorisation, we
can assume that p has connected fibers. Then by Proposition X.10 0 � χtoppSq ¥ χtoppBq � χtoppFηq. Note that
χpFηq � 2�2gpFηq ¤ 0, since if we would have gpFηq � 0 then S would be ruled by Noether–Enriques Theorem.
By assuption gpBq ¥ 1. Consider the following cases:

1o gpFηq � 1.

In this case we have an equality in the inequality from Proposition X.10, which implies (after analyzing the
proof) that the fibers of p : S Ñ B are smooth, i.e. p is smooth. Moreover, they are of genus 1. Thus, by
Proposition VI.8: S � pB � F q{G and by Lemma VI.10 we can assume that G acts both on B and F .

2o gpFηq ¥ 2.

In this case the inequality of Proposition X.10 yields gpBq � 1. We proceed in the same way as in 1o.

VII Kodaira dimension

VII (1)

Lemma Let R be a graded integral C-algebra with field of fractions K. Suppose that the transcendence
degree of R over C is d. Then there exist algebraically independent (over C) elements f1, . . . , fd P R, which
are homogeneous of the same degree.
Proof: Choose any algebraically independent (over C) elements f1, . . . , fd P R. Suppose that f1, . . . , fm are
already homogeneous of the same degree. If all the homogeneous components of fm�1 were algebraically
dependent from f1, . . . , fm�1, fm�1, . . . fd, then fm�1 would also be dependent. Thus we can replace fm�1

by its homogeneous component in such a way that the transcendence degree of Cpf1, . . . , fdq is still d.
Thus, after d steps we can assume that f1, . . . , fd are all homogeneous. By replacing fi’s by suitable powers,
we can assume that they are of the same degree. This ends the proof.

By the Lemma, we can choose f1, . . . , fd P ΓpV,OV pnKqq, which are algebraically independent. Let fd�1, . . . , fN

be such that f1, . . . , fN is a basis of ΓpV,OV pnKqq. We want to show that ϕ|nK|pV q has dimension at least d�1.
Note that on U :� tx : f1pxq � 0u, ϕ|nK| is given by r1 : f2{f1 : . . . : fm{f1s. Note that the coordinates 2 to d
are algebraically independent, and thus the image of U has dimension d� 1. This ends the proof.

VII (2) Let S �
À

n¥0H
0pOV pnKV qq �

À
n Sn, T �

À
n¥0H

0pOW pnKW qq �
À

n Tn. By Fact III.22 (i) and (ii):

H0pOV�W pnKV�W qq � H0pOV pnKV qq bC H
0pOW pnKW qq � Sn bC Tn,

i.e. à
n¥0

H0pOV�W pnKV�W qq �
à
n

Sn bC Tn

is the cartesian product of the graded C-algebras S and T , S �C T (cf. Hartshorne, Algebraic Geometry,
Exercise II.5.11). By the same exercise in Hartshorne:

Proj
à
n¥0

H0pOV�W pnKV�W qq � ProjS �C ProjT.
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Thus the dimension of the above scheme is dim ProjS � dim ProjT and therefore the transcendence degree ofÀ
n¥0H

0pOV�W pnKV�W qq equals the transcendence degree of S plus the transcendence degree of T , which
ends the proof by the previous exercise.

VII (3) We will use the following Lemma:

Lemma (MO80288) Let π : V Ñ W be a generically separable surjective morphism of projective smooth
varieties of the same dimension. Then:

KV � π�KW ¥ 0.

Moreover, if π is étale, KV � π�KW .
Proof: consider the relative cotangent exact sequence:

0 Ñ π�ΩW {k Ñ ΩV {k Ñ ΩV {W Ñ 0

(it is exact on the left, since π is generically separable and dimV � dimW , cf. [Ravi Vakil, Foundations,
Proposition 21.7.2]). By taking determinant, we see that π�ωW {k � ωV {k. This ends the proof of the first
part. The second is straightforward, since in that case ΩV {W � 0 by definition of étale morphism.

Note that by projection formula, since KW is a line bundle, π�π�KW � KW and thus

H0pW,nKW q � H0pW,π�nπ
�KW q � H0pV, nπ�KW q

and the last space embedds into H0pV, nKV q by the Lemma. Thus the canonical ring of W embedds into that
of V and κpW q ¤ κpV q. If π is étale then KV � π�KW and the canonical rings are equal, which leads to the
conclusion.

VIII Surfaces with κ � 0

VIII (1) (Errata: probably, it was meant to be P12 ¡ 1?)

Observe that S is non-ruled, as otherwise pg � 0. Note that by assumption papSq � pgpSq � qpSq � �1 and
thus χpOSq � 0. Thus, by Theorem X.4, κpSq   2, which implies (by Lemma IX.1 and Proposition VI.2) that
K2
S � 0. Thus by Noether formular, χtoppSq � 12χpOSq � 0. Therefore by ex. VI.4, S � pB � F q{G, where B

is an elliptic curve. Also, we can assume that G acts on B and F by Lemma VI.10. Now, by proof of Theorem
VI.13, 2 � qpSq � gpB{Gq � gpF {Gq. Note that gpB{Gq ¤ gpBq � 1. We consider the following two cases:

1o gpB{Gq � 1. In this case gpF {Gq � 1. This is possible iff we have group monomorphisms φ1 : G Ñ B,
φ2 : GÑ F and G acts via translations via φ1, φ2. But then G might be considered as a subgroup of B � F

via pφ1, φ2q : GÑ B � F and a quotient of an abelian variety by a subgroup is an abelian variety.

2o gpB{Gq � 0. In this case gpF {Gq � 2. We’ll show that P2 ¡ 1. By proof of Proposition VI.15:

P12 � dim
�
H0pωb12

B q bH0pωb12
F q

�G
Note that H0pωb12

B q is G-invariant (one checks that via the explicit description of automorphisms of an elliptic
curve). Thus

P12 � dimH0pωb12
F qG � dimH0pF {G,L12q, where L12 � ωb12

F {G bO

�� ¸
PPF {G

r12 � p1� 1{eP qs

�,
and eP are the ramification indices of F Ñ F {G. Note that:

degL12 � 12 � p2 � 2� 2q �
¸
P

r12 � p1� 1{eP qs.

Thus degL12 ¡ 2gpF {Gq � 2 � 2 and the proof follows by Riemann–Roch.

VIII (10) Consider the following two cases:
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(a) g � 2k � 1. Let S be the surface given by the equation:

w2 � fpx, yq, px, yq P P1 � P1

(where f is of bidegree 4, e.g. ???) inside of ?? WPp2, 1, 1q ??. Note that S is smooth ??.

Consider the map π : S Ñ P1�P1, πpx, y, wq � px, yq. This is a double cover branched along C1 : fpx, yq � 0.
Thus by Riemann–Hurwitz formula:

KS � π�KP1�P1 �RS{P1�P1 � π�p�2H1 � 2H2q � C2

(where C2 : w � fpx, yq � 0 � S). But π�pC1q � epC1q � C2 � 2 � C2 and on the other hand π�pC1q �

π�p�4H1 � 4H2q. Therefore:
KS � 0

and S is a K3 surface.

Let C be the preimage in S of any smooth curve in |H1 � kH2|. Then ϕ|C| is a composition of:

S
π
Ñ P1 � P1 ϕ|H1�kH2|

ãÑ P2k�1

– this ends the proof in this case.

(b) Let C 1 : fpx, y, zq � 0 be any nodal sextic in P2, e.g. ??, with node in P0. Let S1 be given by the equation:

w2 � fpx, y, zq

in ?? the weighted projective space WPp3, 1, 1q. Let also π1 : S1 Ñ P2, px, y, z, wq ÞÑ px, y, zq – it is a double
cover, branched in C 1. Consider now the blow-ups in P0 and π1�1pP0q:

S :� Blπ�1pP0qpS
1q F1 :� BlP0pP2q

S1 P2

π

π1

VIII (12) Consider the universal coefficient theorem for cohomology:

0 Ñ Ext1
ZpHi�1pX,Zq,Zq Ñ HipX;Zq Ñ HomZpHipX;Zq,Zq Ñ 0.

Note that for any finitely generated abelian group M :

• HomZpM,Zq is torsion-free,

• ExtZpM,Zq �Mtors, since ExtZpZ{n,Zq � Z{n, ExtZpZ,Zq � 0.

Therefore, HipX;Zqtors � Hi�1pX,Zqtors.

Let S be a K3 surface. Then b1pSq � 2qpSq � 0 and thus H1pS,Zq is finite. Note that H1pS,Zq � π1pS, sq
ab. Let

π : rS Ñ S be an étale cover of S of degree n. Then by ex. VII (3), κprSq � 0 and thus pgprSq ¤ 1. On the other
hand:

χpO
rSq � n � χpOSq � n � p1� qpSq � pqpSqq � 2n

and, since χpO
rSq � 1 � qprSq � pqprSq, pgprSq ¥ 2n � 1. Thus 1 ¥ 2n � 1 and n � 1, i.e. π is an isomorphism.

Thus S has no non-trivial étale covers. Therefore H1pS,Zq � 0 (since every finite topological cover of S is an
algebraic surface, which is an étale cover of S) and H2pS,Zqtors � H1pS,Zq � 0.

Let S be now an Enriques surface with a double cover π : rS Ñ S, where rS is a K3 surface. Then π1pS, sq{π1prS, rsq �
Z{2 and in particular H1pS,Zq � H1pS,Zq{H1prS,Zq � Z{2. Therefore H2pS,Zqtors � H1pS,Zq � Z{2. Finally,
note that rKs (the image of K under PicS Ñ H2pS,Zq) is non-zero:

• the kernel of PicS Ñ H2pS,Zq is the complex torus of dimension qpSq � 0, i.e. it is trivial,

• K � 0, since pgpSq � 0 � 1

and 2rKs � r2Ks � 0. Thus H2pS,Zqtors � xrKsy � Z{2. This ends the proof.
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IX Surfaces with κ � 1

IX (1)

P is surjective: note that B � imP and thus JacpBq � imP , since B generates JacpBq.

qpSq P tgpBq, gpBq � 1u: by low degree terms exact sequence for Leray spectral sequence:

0 Ñ H1pB,OBq Ñ H1pS,OSq Ñ H0pB,R1p�OSq Ñ 0

(note that p�OS � OB , since ????). Hence:

qpSq � dimH1pOSq � dimH1pOBq � dimH0pR1p�OSq � gpBq � dimH0pR1p�OSq.

Consider now L :� R1p�OS . Note that for all fibers, singular or not, dimH1pFb,OFbq � 1 (this follows by
classification of singular fibers?). Thus L is a line bundle by Grauert theorem ([Hartshorne, AG, Corollary 12.9])

Moreover, the degree of L equals �χpOSq. Indeed, by taking the Euler characteristic of the Leray spectral
sequence:

χpOSq �
¸
p,q

p�1qp�qχpEpq2 q � dimH0pLq � dimH1pLq � dimH1pOBq � dimH0pOBq

χpOSq � pdegL� 1� gpBqq � pgpBq � 1q.

Therefore, by Castelnuovo inequality:
degL � �χpOSq ¤ 0

and we have two possibilities:

• L � OB – then dimH0pLq � 1 and qpSq � gpBq � 1,

• L � OB – then H0pLq � 0 and qpSq � gpBq.

Kernel of P : suppose that qpSq � gpBq � 1. Then the kernel of P is one-dimensional, and thus it is an elliptic
curve E. Fix an embedding β : B Ñ JacpBq. Let b P B and suppose that Fb is smooth. Then the fiber of βpbq
via AlbpSq Ñ JacpBq is a translate of E. Thus we obtain a morphism Fb Ñ E – this means that Fb and E are
isogeneous.

Sources: Friedman, Algebraic Surfaces and Holomorphic Vector Bundles; Dürr, Fundamental groups of elliptic
fibrations and theinvariance of the plurigenera for surfaces with odd first Betti number.

IX (6)

Step I: WLOG D is effective.

By Riemann–Roch, h0pDq � h0p�Dq ¥ 2. Thus, (if there exists at least one smooth rational curve), obviously
h0pDq ¥ 2. Therefore we can WLOG assume that D is effective.

Step II: D is nef.

Firstly, note that if D is effective and D.C ¥ 0 for all rational curves then D is nef, i.e. D.E ¥ 0 for every
effective divisor E. Indeed, it suffices to check this when E is an irreducible curve. But then if gpEq ¥ 1, then by
genus formula E2 ¥ 0 and thus if D � nE �D1 for n ¥ 0, D1 not containing E. Thus D.E � nE2 �D1.E ¥ 0.

Step III: |D| has no fixed part.

Let Z, M be the fixed and mobile part of D. Note that 0 � D2 � D.Z �D.M . But D.Z,D.M ¥ 0 (since Z,M
are effective and D is nef). Thus D.Z � D.M � 0. But 0 � D.M �M2 � Z.M , and since M2, Z.M ¥ 0 (as M
is mobile), M2 � Z.M � 0. But 0 � D2 �M2 � Z2 � 2Z.M � 2Z.M and thus Z2 � 0. Assume to the contrary
that Z � 0. By Riemann–Roch, h0pZq � h0p�Zq ¥ 2, and thus (since Z ¡ 0) h0pZq ¥ 2. But Z is the fixed part
of |D|, and thus h0pZq ¤ 1! Contradiction proves that Z � 0.

Step IV: |D| is base point free.
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|D| has no fixed part, and thus the number of its fixed points is ¤ D2 � 0.

Step V: D � kE for an elliptic curve E and k ¥ 1.

Consider now the morphism φ : S Ñ PN , defined by D. Note that since D2 � 0, its image must be a curve
(if its image was a surface, we would obtain a contradiction by Hodge index theorem, cf. Corollary VIII.5). Let
S Ñ C Ñ C 1 � PN be the Stein factorisation of φ, where C Ñ C 1 is of degree k ¥ 0. Let E be the generic fiber
of S Ñ C. Then E is smooth, E2 � 0 and by the genus formula gpEq � 1

2E
2 � 1 � 1. Thus D � kE and the

proof follows.

Step VI: D2 � 0, D � 0 ñ S is elliptic.

Method I:

Lemma: (”Weyl chambers”) Let V be an Euclidean space with an indefinite bilinear form ΦpX,Y q of
signature p1,dimV � 1q. Let T � V be a finite subset and let:

C :� tx P V : Φpx, tq ¥ 0@tPT u.

Suppose that C � ∅. Let stpxq :� x � Φpx, tqt (reflection around Φpx, tq � 0). Then for any x P V , there
exists s P xst : t P T y such that spxq P C.
Proof: Note that C is a cone in V . Thus it is given by finitely many inequalities, in particular we may
assume that T is finite. The hyperplanes pΦpx, tq � 0qtPT divide V into finitely many chambers. By using
the reflections, we can move x from one chamber to any other, in particular to C. (It is a standard proof in
the theory of root systems, cf. e.g. Kirillov – Introduction to Lie Groups and Lie Algebras, Lemma 7.26).

Let V :� NSpSq bZ R, T � trCs : C is a rational curve on Su, ΦprD1s, rD2sq � D1.D2. Note that then:

• WLOG T is finite. (since nef cone is a cone, it can be given by finitely many inequalities – why??)

• C � ∅, since the class of any ample divisor belongs to C.

Then for some w P xwrCs : rCs P T y, wpDq.C ¥ 0 for all C P T . Moreover, if E2 � 0 and rCs P T then:

wrCspEq
2 � pE � pE.CqC,E � pE.CqCq � E2 � 2 � pE.Cq2 � pE.Cq � C2 � 0� 2 � pE.Cq2 � pE.Cq � p�2q � 0.

Thus wpDq2 � 0 and the proof follows by earlier steps.

Method II: suppose that C is a rational curve, such that D.C   0. Let D1 :� wCpDq. Then D12 � 0,
D1.C � D.C � 2D.C � �D.C. Moreover, one shows that if dim |D| ¥ 1 then dim |D1| ¥ 1. Finally, note that
0   H.D1 � H.D � pC.DqC.H   H.D, so this procedure may be performed only finitely many times.

IX (7) We start by computing the Picard number of S, i.e. ρpSq :� rankZNSpSq. Note that papSq � pgpSq � qpSq � 0
and thus χpOSq � 1. But χpOSq � h0pOSq � h1pOSq � h2pOSq � 1 � qpSq � h2pOSq � 1 � h2pOSq. By the
exponential sequence we obtain:

0 Ñ H1pSan,Zq Ñ H1pS,OSq Ñ PicpSq Ñ H2pSan,Zq Ñ H2pS,OSq � 0.

Therefore:
NSpSq :� impPicpSq Ñ H2pSan,Zqq � H2pSan,Zq

and ρpSq � b2pSq. By Noether formula we have:

χpOSq �
1
12
pK2

S � χtoppSqq ñ χtoppSq � 12χpOSq � 0 � 12.

On the other hand, χtoppSq � 2 � 2b1pSq � b2pSq � 2 � 4qpSq � b2pSq and thus b2pSq � 10. We use now the
following fact:

Fact: Let V be a Q-vector space of dimension ¥ 5. Every indefinite quadratic form on V admits a non-trivial
zero.
(It is an easy corollary of Hasse principle for quadratic forms, cf. [Serre, A Course in Arithmetic, p. 38])
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Consider now the quadratic form D ÞÑ D.D on NSpSq bQ. It is indefinite (of signature p1,�1,�1,�1 . . . ,�1q
by Hodge index theorem). By the fact it admits a non-trivial zero, which yields us a divisor D P DivpSq, D2 � 0,
D � 0. Let π : rS Ñ S be the associated covering by a K3-surface. Then π�D � 0 (since π�π�D � 2D � 0) and
pπ�Dq2 � D2 � 0. Thus rS is elliptic by the previous exercise. Let rS Ñ P1 be the elliptic fibration and suppose
that it is given by a linear system P . Consider now the linear system π�P . Note that its generic member is
covered by an elliptic curve from P , so it is also an elliptic curve by Riemann–Hurwitz formula. Also, it is base
point free. Indeed, if x P S would be a base point and π�1pxq � tx1, x2u, then every member of P would pass
through x1 or x2. But then

P � tD P P : D passes through x1 u Y tD P P : D passes through x2 u

– by the irreducibility of projective space, P would be equal to one of those sets, and would have a base point.
Thus π�P gives a morphism into projective space, whose generic fiber is an elliptic curve.

X Surfaces of general type

X (1) (Stolen from Suzuki)

Note that there exists a composition of blow-ups ε : rS Ñ S such that φK lifts to a morphism φ : rS Ñ S1. Let
KS � Z�M be the fixed and mobile part of KS . Then by the above assumption, the divisor M 1 � ε�M�

°
i aiEi

(where ai ¥ 1 and Ei are exceptional curves on rS) is base point free and defines φ : rS Ñ S1. We consider two
cases:

1o φKpSq is a surface S1.

Note that S1 is a surface of degree pM 1q2 (since M 1 � φ�H for a hyperplane section H) in |K|� � |pM 1q�|

and that:
pM 1q2 �M2 �

¸
i

a2
i ¤M2

But h0pKq � pg and thus dim |K|� � dim |M 1|� � pg � 1. Therefore by ex. VI.2 (a) M 12 ¥ 2ppg � 1q � 2 �
2pg � 4. On the other hand:

K2 � Z2 �M2 � 2Z.M � K.Z � Z.M �M2 ¥M2

(since S is of general type, KS is nef by Corollary VI.18 (2) – thus K.Z ¥ 0. Moreover, Z.M ¥ 0, since M
is mobile and may be assumed to have no common components with Z). This ends the proof in this case.

2o φKpSq is a curve C.

Idea: φK cannot be a morphism – otherwise K2 � pn � fiberq � 0. Also we can estimate n (the degree
of finite morphism in Stein factorisation).

Since K2 ¡ 0, we can WLOG assume that pg ¥ 3. Let rS Ñ rC Ñ C be the Stein factorisation, whererC Ñ C is a finite morphism of degree n.

Step I: n ¥ pg � 1.

Observe that M 1 � F1 � . . .� Fn, where Fi are the connected components of the fiber of rS Ñ C (if F is a
fiber of rS Ñ rC then F �alg Fi). Consider now the exact sequence:

0 Ñ O
rS Ñ O rSpMq Ñ OM pMq �

à
i

OFipM � Fiq �
à
i

OFipFi � Fiq

and the associated long exact sequence:

0 Ñ H0pO
rSq Ñ H0pO

rSpMqq Ñ
à
i

H0pOFipM � Fiqq Ñ . . . ,

which yields: ¸
i

dimH0pOFipM � Fiqq ¥ dimH0pO
rSpMqq � dimH0pO

rSq � pg � 1.
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On the other hand,
dimH0pOFipM � Fiqq � dimH0pOFiq � 1

(since Fi �num F , F 2
i � 0) and thus n ¥ pg � 1.

Step II: note that ε is proper and thus we have a pushforward on divisors. Let F1 :� ε�F . ThenM �alg nF1.
And thus (since K is nef):

K2 � K.Z �K.M ¥ K.M � n � pK.F1q.

Thus it suffices to show that K.F1 ¥ 2 – then we will have:

K2 � n � pK.F1q ¥ 2n ¥ 2 � ppg � 1q.

Step III: K.F1 ¥ 2.

Suppose to the contrary that K.F1 P t0, 1u. If K.F1 � 1 then:

1 �M.F1 � Z.F1 � nF 2
1 � Z.F1.

But Z.F1 �
1
nZ.M ¥ 0 and M.F1 �

1
nM

2 ¥ 0 and thus we have two possibilities:

1o F 2
1 � n � 1, Z.F1 � 0.

In this case 1 ¥ pg � 1, i.e. pg ¤ 2 and we are done by previous remark.

2o F 2
1 � 0, Z.F1 � 1.

By genus formula: 2|F 2
1 � Z.F1 � 1, which yields contradiction.

If K.F1 � 0 then Z.F1 � M.F1 � 0 and thus F 2
1 � 0. But, since K2

S ¡ 0, by Hodge index theorem,
F1 �num aK for a P Q, and thus 0 � F 2

1 � aK2 implies a � 0. But F1 �num 0 is impossible, since F1 is an
irrducible curve! (e.g. if H is very ample then H.F1 ¡ 0). This ends the proof.

X (2) Suppose that S1 Ñ S is an étale cover of S of degree n. Then χpOS1q � nχpOSq ¥ n, i.e. 1� qpS1q � pgpS1q ¥ n,
which implies pgpS1q ¥ n�1. Then by Noether inequality (Ex. X(1)) K2

S1 � nK2
S � n ¥ 2pgpS1q�4 � 2pn�1q�4,

i.e. n ¤ 6. This implies that S has only finitely many étale covers (why???) and thus π1pSq
ab � H1pS,Zq is finite,

i.e. 0 � b1pSq � 2qpSq. This shows also that #H1pX,Zq ¤ 6.

?????

X (3) Erratum: in P6.

Let raijs1¤i¤4,1¤j¤7 PM4,7pCq be any matrix of rank 9 and define:

QipX1, . . . , X7q :�
7̧

j�1

aijX
2
j , S1 :� Q1 X . . .XQ4.

Let also G � pZ{2q3 act on P8 via:

p1, 0, 0q � rX1 : X2 : . . . : X7s � r�X1 : �X2 : �X3 : �X4 : X5 : X6 : X7s

p0, 1, 0q � rX1 : X2 : . . . : X7s � r�X1 : �X2 : X3 : X4 : �X5 : �X6 : X7s

p0, 0, 1q � rX1 : X2 : . . . : X7s � rX1 : �X2 : �X3 : X4 : X5 : �X6 : �X7s

One easily checks that for every g P G, g � 0:

g � rX1 : X2 : . . . : X7s � rε1X1 : ε2X2 : . . . : ε7X7s

where εi P t�1u and among εi there are three 1’s and four �1’s, or three �1’s and four 1’s. We will show that
if P P S1, g P G, g � e then g � P � P . Suppose the opposite. The equality g � P � P implies that at least
three numbers from tX1, . . . , X9u are zero. Indeed, WLOG we can check it for g � p1, 0, 0q. If rX1 : X2 : . . . :
X7s � r�X1 : �X2 : �X3 : �X4 : X5 : X6 : X7s then either X5 � X6 � X7 � 0 or pX1, X2, . . . , X7q �

p�X1,�X2,�X3,�X4, X5, X6, X7q and thus X1 � X2 � X3 � X4 � 0.
Thus the squares of the non-zero coordinates of P satisfy the system of 4 linear equations QipP q � 0 for
i � 1, . . . , 4. Since this system has 4 equations, 4 variables and rank 4, all the solutions are zero. This ends the
proof of the fact that G acts on S1 freely.
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Note that OSpKSq � OSp4 � 2� 7q � OSpHq and thus K2
S � H2 � degree of S1 in P6 � 24 � 16. Since S1 Ñ S is

étale, KS1 � π�KS and (by Prop. I.8 (ii)) K2
S �

1
8K

2
S1 � 2. To compute qpSq, note that qpS1q � dimH1pOS1q � 0

(since S1 is a complete intersection) and thus:

qpSq � dimH0pΩSq � dimH0pΩS1qG � dimH1pOS1qG � 0.

Finally, since χpOS1q � 25 � χpOSq, we compute that pgpSq � 0. ??????

X (4) Let φ �

�
1 2
3 4

�
P AutppZ{5q2q. Then the action of g � px, yq P pZ{5q2 on C � C is as follows:

g � prX1 : Y1 : Z1s, rX2 : Y2 : Z2sq � prζx �X1 : ζy � Y1 : Z1s, rζ
x�2y �X2 : ζ3x�4y � Y2 : Z2sq.

Suppose that g � pP1, P2q � pP1, P2q with g � p0, 0q. Consider the following possibilities:

1o Z1, Z2 � 0.

Then X1 � ζx �X1 and thus X1 � 0 or x � 0. Analogously, Y1 � 0 or y � 0, X2 � 0 or x� 2y � 0, Y2 � 0 or
3x� 4y � 0. Note that pX1, Y1q, pX2, Y2q � p0, 0q. Thus we have two possibilities:

1o A) x � 0. Then 2y � 0 or 4y � 0 – both cases lead to y � 0, which is a contradiction.

1o B) y � 0. Then x � 0 or 3x � 0 – both cases lead to x � 0, which is a contradiction.

2o Z1 � 0, Z2 � 0.

Then X1 � 0 or x � 0 and Y1 � 0 or y � 0. Moreover, X2 � �Y2 � 0 and rX2 : Y2s � rζx�2y � X2 :
ζ3x�4y � Y2s � rζpx�2yq�p3x�4yq �X2 : Y2s and thus px� 2yq � p3x� 4yq � 0, i.e. �2x� 2y � 0. Thus, if one of
the numbers x, y is zero, the second is also. Contradiction!

3o Z1 � 0, Z2 � 0.

Then, analogously as in 2o, x� y � 0 and, analogously as in 1o, X2 � 0 or x� 2y � 0, Y2 � 0 or 3x� 4y � 0.
Thus x� 2x � 0 or 3x� 4x � 0 – in both cases x � y � 0 – contradiction!

4o Z1 � 0, Z2 � 0.

Then, analogously as in 2o, x� y � 0 and px� 2yq � p3x� 4yq � 0, which leads to x � y � 0. Contradiction!

Thus the action of G on C � C is free, the quotient pC � Cq{G is a smooth surface and C � C Ñ pC � Cq{G is
étale of degree #G � 25.

By degree–genus formula gpCq � 6. Note that KC�C � pr�1KC � pr�2KC and thus

K2
C�C � 2pdegKCq

2 � 2 � p2 � pgpCq � 1qq2 � 200.

Since π : C �C Ñ pC �Cq{G is étale, KC�C � π�KpC�Cq{G and (by Prop. I.8 (ii)) K2
pC�Cq{G �

1
25 �K

2
C�C � 8.

Now, analogously as in the proof of Theorem VI.13 and using example VI.12 (a):

H0pΩ1
pC�Cq{Gq � pH0pΩCq`2qG, H0pΩ2

pC�Cq{Gq � pH0pΩCqb2qG.

It is a standard fact that

H0pΩCq �
"
xi�1 dx

yj
: pi, jq � p1, 2q, p1, 3q, p1, 4q, p2, 3q, p2, 4q, p3, 4q

*
(where x � X

Z , y � Y
Z ). One checks easily that pH0pΩCq`2qG � pH0pΩCqb2qG � 0 and thus q � pg � 0.

Other examples: ???

X (5) By X (1): K2 � 1 ¥ 2pg � 4 and thus pg ¤ 2. Suppose that S1 Ñ S is an étale cover of S of degree n. Then
χpOS1q � nχpOSq ¥ n, i.e. 1 � qpS1q � pgpS

1q ¥ n, which implies pgpS1q ¥ n � 1. Then by Noether inequality
(Ex. X(1)) K2

S1 � nK2
S � n ¥ 2pgpS1q � 4 � 2pn� 1q � 4, i.e. n ¤ 6. This implies that S has only finitely many

étale covers (why???) and thus π1pSq
ab � H1pS,Zq is finite, i.e. 0 � b1pSq � 2qpSq. This shows that qpSq � 0.
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X (6) Suppose to the contrary that image of φ2K is a curve C. Let 2K � Z �M be the decomposition into fixed and
movable part. There exists a composition of blow-ups ε : pS Ñ S such that φ2K lifts to a morphism φ : pS Ñ C.
In other words, the system |xM | has no base points, where xM :� ε�M �

°
i aiEi, ai ¥ 0, Ei – exceptional curves.

Let pS Ñ B Ñ C be Stein factorisation, where B Ñ C is of degree n and B is smooth. Then xM �
°
i Fi, where

Fi are fibers of pS Ñ C and Fi �alg F (where F is a generic fiber of pS Ñ B). Note that gpFiq ¥ 2 (otherwise S
would be elliptic or ruled). We start by computing n.

By taking the long exact sequence of

0 Ñ OS Ñ OSpMq Ñ
à
i

OFi Ñ 0

(?????) and noting that h0pMq � h0p2Kq � (by Riemann–Roch) � pgpSq � 1, we see that n � pgpSq.

Note that by adjuntion formula, |K � F | induces canonical linear system on F . But canonical system on any
smooth curve of genus ¥ 2 is very ample – thus the map defined by |K � F | gives an embedding of F into
projective space. We will prove that K � F ¤ 2K. Then it will follow that the map defined by |K � F | factors
via the map defined by |2K|:

X }2K}�

}K � F }�

This leads to a contradiction, since F is contracted by φ2K and φK�F |F is an embedding. Consider two cases:

(a) Suppose that pgpSq ¥ 2. To show K � F ¤ 2K, it suffices to show that K � F ¤ 2K. But nF ¤ 2K, and
thus K � F ¤ p1� 2

n qK ¤ 2K.

(b) Suppose that pgpSq � 1. Then 2K � Z �F . Thus F ¤ K (if F is contained in the divisor 2K, then also in
K). Therefore K � F ¤ 2K.

This ends the proof.
TODO: check??? F and Fi ñ ??


