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1 Galois Theory of Fields

1.2 Let G = lim. G; be an inverse limit of an inverse system of finite groups. Let Ggp ) denote the corresponding

p-Sylow subgroup. Define G®) := lim._ GZ(-p ), Clearly, it is a pro-p-subgroup of G. By the following lemma, any

Lemma If H = lim. H;, where H; are finite groups of order non-divisible by p, then for any quotient N of
H one has H; - N for some i.

Proof: let p; : H — H; be the canonical projection. Suppose that p : H — N, where N is a finite group.
The ker p is an open neighbourhood of identity and thus it contains ker p; for some i. Thus H; =~ H/kerp; —
H/kerp =~ N. This ends the proof.

1.3 Let K := k*P. The given conditions on k) are equivalent to Gal(K /k‘(”)) being the pro-p-Sylow-subgroup of
Gal(K /k). Thus we have to show that if G(®) is the pro-p-Sylow-subgroup of G := Gal(K/k) then it is closed.
Let K = lim_ K,,, where K, /k are finite Galois and K,, € K,,+1. Then GP = lim._ Gal(K/Kn)(p). Let H, < G
be the inverse image of Gal(K/K,,)® under

Gal(K /k) — Gal(K/K,).

Then H,, is closed in G. But (since H,, > H,,11) GWP =lim_ H, = ﬂn H,, is closed as an intersection of closed
subsets.
This extension doesn’t have to be unique, since the pro-p-Sylow subgroup is determined only up to conjugation.

1.4 (a) Denote the compositum of all quadratic extensions of Q by Q®@. Let (pi)i be the sequence of all primes
and Q,, := Q(v/—1,/P1, /D2, - - -, /Pn)- Then:
e Q@ =1lim_, Q,,
. Gal(Q,/Q) = (Z/2)".
Thus Gal(Q®?/Q) = [[;2, Z/2. This group clearly has 2% elements and 2%° subgroups of index 2 (...7?7).
(b) Note that open subgroups of index 2 of Gal(Q(®)/Q) correspond bijectively to quadratic extensions of Q.

But there is only countably many of them (they correspond bijectively to Q*/Q*? = (—1,p1,pa,...) =
@;°, Z/2). And there is uncountably many subgroups of index 2 in Gal(Q® /Q)!

1.7 Let A:= A®y k.

(a) If A = k[G], then A clearly satisfies the given conditions. Suppose now that A satisfies the given conditions.
Let n := #G, A = 1, k and let eq,...,e, be the orthogonal idempotents. Fix a g € G and note that

gei,...,ge, are again orthogonal idempotents. Indeed,

gé€i, { :.7

(g€i) - (ge5) = g(eie;) = o
0, 1 .

Thus (from the uniqueness of n-tuples of orthogonal idempotents) g permutes the orthogonal idempotents:

gei = €, (i) for some o4 € S,. Consider the element z := deG gep. Clearly, = € A% = % and thus
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1.8

Yige €oy(1) = € = 2, ce;. However, this means that ¢ = 1 and {ge; : g € G} = {ey1, ..., e, }. Consider the
homomorphism of G-algebras:

kE[G] — A, ZaggH Zagg-el.
geG geG
From the above considerations, it is surjective and is between vector spaces of the same dimension. Thus it
is an isomorphism.

(T believe that the action of G and Gal(k) have to commute).

We have to show that for an étale k-algebra A, Homy (A, ks) is a transitive G-set if and only if A is a Galois
G-algebra. Note that if G acts on Homy(A, k), then G acts on A. Indeed, then A = A™" = Homy (A, k)*
and thus G acts k-linearly on A. Since actions of G' and Gal(k) commute (where the action on A is given by
o(a®z) 1= a®o(z) — so that A9 A), the action of G descends to A: if a € A then for any o € Gal(k),
geG:

o(g(a®1)) = glo(a®1)) = g(a®1)

—Gal(k) A

and thus g(a®1) € A

From (a) one easily sees that a G-algebra is Galois if and only if G acts simply transitively on the maximal
set of orthogonal idempotents. But Homy (A, ks) = Homz(A, k) = {ef,... ek}, where (ef) is the dual

7

basis the the orthogonal idempotents. But G acts simply transitively on (e}

) if and only if it acts simply
transitively on (e;). This ends the proof.

Note that if Gal(k) acts on S via even permutations then it acts on A(S) trivially. But the trivial Gal(k)-set
on two elements clearly corresponds to k x k.

Suppose now that action of at least one element of Gal(k) induces an odd permutation of elements in S.
Then G acts non-trivially on A(S) and therefore (since #A(S) = 2) it is a transitive Gal(k)-set of order 2.
Thus by Galois correspondence, it corresponds to some extension of k of degree 2.

Let aq,...,a, be the roots of f. Note that then we can identify S =~ Homy (A, ks) with {a1,...,a,} (as
Gal(k)-sets). Note that d(f) = [[,_; (e — a;)? (it is the discriminant of f). Thus /d(f) = [Licj(ei —aj).
L Tt is straightforward that for any g € Gal(k) we have:

alf), if g acts as an even permutation on S,

g(vd(f)) =

—+/d(f), if g acts as an odd permutation on S.

This shows that Homy(A(A),ks) = {—+/d(f),+/d(f)} (isomorphism of Gal(k)-sets) is isomorphic as a
Gal(k)-set to A(S). This ends the proof.

2 Fundamental groups in topology

2.1

Lemma If Y is a Hausdorff space and x1,...,2x, € Y are pairwise different, then there exist paiwisely
disjoint open sets Uy, ..., U, such that z; € U;.

Proof: By the Hausdorff property, we may find open sets V;; such that x; € Vi;, Vi; n'V;; = @. It suffices
to take:

Let G = {¢1,...,9n} and take any y € Y. By lemma, we may find pairwise disjoint U; such that g; - y € U; (note
that by assumption, g - y1,..., g, - y are pairwise dijoint). Define:

U .= ﬁg;lUl
i=1

Then clearly, y € U and g;U n g;U c U; nU; = & for i # j.

1

we choose one root, another is —[]; _;(a; — o )
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2.2

2.3

2.4

(Should be (?): ... if and only if the natural map

Y xG—Y xyxY, (v,9) = (4,9 y)

is a homeomorphism.)
Recall that
Y xxY ={(y1,92) €Y xY : 7w(y1) = n(y2)}.
Suppose that 7 : ¥ — X is a Galois cover. Then G acts freely and transitively on every fiber, in particular for
any y1,y2 such that 7(y;) = 7(y2) we may define yo - y; ' € G (in other words, fibers are principal homogeneous
spaces under G). Thus we have mutually inverse homeomorphisms:
YxxY =~ Yx@G
(y1,v2) — (y2- i)
(v1,9-3) < (y1,9)-

Suppose now that the natural map

Y xG—>Y xxY, (y,9) — (v,9-y)

is a homeomorphism. Then G clearly acts transitively on fibers of 7 and thus 7 : Y — X is Galois.

(a) We want to show that p, : m1(Y,y) — m1(X, x), [y] — [po~] is an injection. Suppose that [y] € ker p,. Let
f:00,1] x[0,1] - X, fo =po~, fi =, (the constant path at z) and suppose that f keeps the endpoints
fixed. Use the homotopy lifting property for coverings: to obtain a homotopy f [0,1] x [0,1] — Y lifting
f such that fo = ~. Note that f1 is a path lifting ¢, thus we must have f1 = 1y. It is easy to check that f
must keep the endpoints fixed. This yields: [y] = 0.

(b) By the universal property of 7 : X, — X:
Fib,(Y) = Hom(X,,Y).

Thus y € p~!(z) corresponds to a map P : X, — Y such that p(Z) = y and m = pop. The last equality implies
that p'is a covering of Y (by Lemma 2.2.11). Note that Xl is a universal cover of X and thus it is simply con-
nected. But this means that p : X, — Y is the universal covering of Y. Therefore 71 (Y, y)% =~ Aut(X,/Y) —
Aut(X,/X) and (since universal cover is always normal) ¥ =~ Aut(X,/Y \X, = m (Y, )"\ X,.

(a) Let m : G x G — G be the multiplication map. Note that ée X ée is simply connected and thus may be
identified with the universal cover (G x G), .-
We want to find such a group law m : ée X ée — ée that the diagram:

G, X C:‘e I CNJE
J{ﬂ'xﬂ' J{ﬂ'
GxG —"—G
is commutative (this is equivalent to 7 being a homomorphism). In order to do this, it suffices to choose
(using the universal property of the universal cover CNT‘E) the unique m : C:'e X CNJE — CNJE lifting
mo (rxm):Gex Ge —> G
such that m(e,e) = €.
(b) Suppose that ™/ : G, x G — G, also satisfies the assumptions. Then M/ lifts m o (7 x ) (from the above
commutative diagram) and m/(€) = €. Thus m’ = m, since there exists a unique such lift.
(¢) By the definition of a cover, the map 7 : G. — G is surjective. Note that kerm = 7~ *(e) and we have a
bijection of groups
) = Aut(X,/X)
f@) — f
(which is an isomorphism of abstract groups, by functoriality of this isomorphism) and moreover Aut()N(z /X) =~
71 (X, x)°P. This ends the proof.
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2.6

(a)

Let p: X > X x X, pa: )N(A — X. By the set-theoretical description of pullback:

={(["],2) € X x X : p([7]) = A(2)}
{([V] z)e X x X : (7(0),%(1)) = (z,z)
= {[v] € X : 7(0) = 4(1)},

which easily yields the identification px*(z) = m (X, ).
Monodromy action: let [w] € 71(X,z) and [y] € pi'(x) = 71 (X, z). Consider the path f : [0,1] — XA,
given by:
F(t) = [w(ta) o y(x) e w™ (ta)].
Note that for a fixed ¢, the endpoints of f(t) € X are (w(t),w(t)) and thus A« f = w. Moreover, f(0) = [v]

and f(1) = [w ey e w™!]. Thus the monodromy action of w on 7 is

wvyow_l.

(cf. also ex. 7(b)).

Let Y — [0,1] be an arbitrary cover. We want to explicite the isomorphism Yy = Y7. Let w : [0,1] — [0, 1]
be the identity path. Then for any a € Y), we may define w*a € Y7 by taking @ : [0,1] — Y to be the unique
lift of w such that w(0) = a and defining w * a := @w(1) (the ”path-monodromy action”). It is immediate
that a — w * a gives an isomorphism Yy =~ Y] (the inverse map is b — w=! x b).

In our case:

Y = fuXa = {([7],1) € Xa x [0,1] : 7(0) = +(1) = ()}
Fix [v] € (f+Xa)o. Then @ (as above) is given by the formula @ : [0,1] — Y:

g

(1) := ([f(tx) ¢ (@) o f(tz)~'],1).

Indeed, for a fixed ¢, w(t) is a loop in X with the endpoint being f(¢). Thus under the isomorphism Yy >~ Y7,

v maps to
(1) = ([feye fTL ).

This ends the proof.

The map m is the composition of paths, ¢ is the inverse path, e : X — X is the constant path at a given
point. The listed properties are immediate.

X, where

Let 7: X — X. Fix any [7] € 7~ !((z, ), i.e. a loop on X at z. Consider the path f : [0,1] —
f(t) € X is the path
F)(@) = [n(tz) o y(x) o ya(tz) ']

with beggining and end given by 7 (¢) and ~2(t) respectively. Then 7o f = (y1,72) and thus it lifts the

( ) is

path (v1,72). Therefore the effect of the monodromy action of (v1,72) on [v]

F(1) = [n(z) o () o 72(2) 7],
This ends the proof.
Let us introduce some notation. Suppose that g : Y — Z is a cover. Denote:
e for any path v : [0,1] — Z, 2 := v(0) € Z, Z € g7(2), let v x 2 := F(1), where ¥ : [0,1] — Y is the
unique lift of gamma such that ¥(0) = Z, (”path-monodromy action”)
e i, — constant path at a,

e myy, etc — grupoid operation on II.

Let IT - X x X be a grupoid cover. Define ® : X o1 by:

O([]) := (iny(0),7) * enr(7(0))

(note that paths on X x X are pairs of paths on X). We have to check that it is compatible with myy :
IMxx IT—1I.
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Note that the ”path-monodromy action” of X x X on II x x II is given by:

(71,72) * (x1,22) = <(’Yl, iby) * T1, (Gay, 72) * xZ)

(where (s(z;),t(z;)) = (a;,b;)). Note that my : I x x IT — II is a map of X x X spaces and commutes with
the ”path-monodromy action” of X x X, i.e.:

n72) = manee) = m( (a2 # o) ) = (G * 01, s w02 ) (9

Therefore:

(@) #(D) = o ((0090) *en(1(O): (s 22) *en(r2(0) ) by (4)
= On) « (G * enln (0)en(2(0))) since m (i) = )
= Guw) = (G« enn(0)
= (et m)) +entn(0)

= (iy,1);72 ¢ M) *en(71(0))
= ®([y2enl)

Remark: this is small mistake — the result should be the equality m(®([11]), ®([12])) = ®([v1 @ 12])- In
order to correct it one should trace the whole proof.

2.9 We'll show that the necessary and sufficient condition is the irreducibility of X. Let s1,s5 € S, s1 # s2.

(<) Suppose that F is a sheaf and that X is reducible, i.e. that there exist open Uy, Us; < X, which are disjoint.
Consider (s1,s2) € F(Uy) x F(Uz). Then si1|u,~nv, = S2|U,~Us, since Uy n Uz = @. Thus there should exist
s € F(Uy u Us) such that s|y, = s;. This is however impossible, since u; # us and the restricition maps are
identity maps.

(=) Suppose that X is irreducibile, i.e. that any two open subsets of X have non-empty intersection. Suppose
that (s;); € F(U;) and that s;|y,~v; = sj|v,~v,- Then (since U;nU; # & and the restricition maps are identities)
s; = sj. Thus (s;) glues to a (unique) element s = s; € S = F(|J, U;). This proves the sheaf property.

2.10 We want to show that

{p:Y — X —local homeomorphisms } <« { sheaves on X}
(p:Y = X) — Sec(p)
(X]: - X) — F

(here Sec(p) is the sheaf of local sections of p) is an equivalence of categories.

e Step I: for any sheaf F, Xy — X is a local homeomorphism.
Proof: Let s € Xz, s = [(U,t)] € F, = lim F(V). Let also iy : U — X be the map associated to ¢,
as defined in text. Then i;(U) is an open set and moreover pl; ) is a local homeomorphism — indeed,
pli, vy © @ = id, iy o pl;, vy = id.

e Step II: For any sheaf F, Sec(Xr — X) = F.
Proof: let p: U — Xz be a continuous section of Xz — X. Fix a point @ € X and let p(Q) = [(fg,Ug)] €
Foc XF.

Claim: There exists W such that plw, =iz, |w,-

Proof of the claim: By the definition of topology on X, iy, (Ug) is open. Since p is continuous at
Q, there exists an open set Wg < X such that p(Wq) < iy, (Ug). But p is a section of Xz — X and
if,(Ug) contains only one point in fiber over each R € Ug, namely iy, (R).
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3.1

3.2
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(7if image of one section is contained in the image of another section, they must be equal”)

The Claim easily implies Step II. Indeed, if we show that for Q1 # Qa,

fQ1|WQ1 mWQQ = fQ2|WQ1 ﬁVVQ2 (*)

then by the sheaf property we may glue fg € F(Wg) to f € F(U) and then p = iy. But

ifa, Wa, nWa, = Plwa, nWao, = Plwe, aWa, = isq, IWo, nwa,
easily implies (#).
e Step III: For any local homeomorphism p: Y — X, Xgeop) = Y.
Proof: note that for every @ € Y there exists a neighbourhood Ug < Y of @ such that p|y, is a home-

omorphism. Let fg := (p|UQ)_1. Then we obtain homeomorphisms:

lle

Y Xsec(p)

Q — [(fq.Ug)] € Sec(p)pq)
f(P) — [(f,U)] € Sec(p)p

Note that any map f : F — G induces a map on stalks, which in turn induces a map f’ : Xz — Xg. Thus we
obtain a (unique) map f : Sec(Xz) — Sec(Xg), f(s) = f' o s such that the following diagram commutes:

F—> g

l /

Sec(Xr) —N> Sec(Xg).

But in the previous problem we’ve proven that (since G is a sheaf and not merely a presheaf) the natural map

G — Sec(Xg) is an isomorphism. This ends the proof.

Riemann surfaces

(the map should be proper in order for the problem to make sense)

By Proposition 3.2.1, for every y € ¢~ !(z) there exists a neighbourhood U, of y and local coordinates at y, =

(which we will both denote as z by abusing the notation) such that ¢|y, is in these local coordinates
z— 2.

Let U := ﬂyew,l(w) U, (note that this is an open set, since this is a finite intersection). Pick any w € U. On

one hand, #¢p~!(w) = n, since U does not contain branch points and ¢ is a cover of degree n outside of the set
of branch points. On the other hand, since in the neighbourhood of y € p~!(z), ¢ acts as z — 2%, w has e,

preimages in a neighbourhood of y. In total it has
#o M (w) = Z €y
yep~t(x)

preimages. By comparing both results we prove the theorem.

(a) By Corollary 3.3.12:
Hom(P*(C),PY(C)) = Hom(M(P'(C)), M(P}(C))) = Hom(C(t),C(t)).

But by Liiroth theorem, every subfield of C(t) is of the form C(f(t)) for some f € C(t). This ends the proof.

(b) We'll prove that
ordy f', y is not a pole of f,

ordy (1/f)', yis a pole of f.

In particular, the branch points are the zeroes of f’ and zeroes of (1/f)’.
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Without loss of generality (by applying the automorphism of P!(C), z + 1/z) we may assume that y is
not a pole of f. Then the local coordinates at y and f(y) are obviously z — y and z — f(y) respectively. It
suffices to note that (z — f(y)) o f = f — f(y) = (z —y)° - h(z), where e = ord, f" and h(y) € C*.

(c) Since f is an automorphism, it is in particular a bijection and thus it has a unique pole and a unique zero.

Moreover, by Riemann-Hurwitz formula, Zy(ey — 1) = 0 and thus by previous part, both the zero and the

at+b

pole are simple. But all rational functions with a single pole and a single zero are of the form 7.

(d) Without loss of generality, suppose f(t) = ‘c‘fj:db, ¢ # 0. The equation f(t) =t is a quadratic equation and

thus has 1 or 2 solutions.

3.3 (a) Remark 1: I think one has to assume that X is connected.

Remark 2: note that Theorem 3.2.7 easily implies that Y’ — X’ is a trivial cover iff Y — X is a trivial

cover,ie. Y =Y uYsu...uY, and ply, : Y; — X is a homoeomorphism.

Solution: Let Y = Y; u Y5 ... uY, be the decomposition into connected components. All of them
are closed subsets of Y and thus compact. One easily checks that m; : Y; — X are branched coverings
and M(Y) = [], M(Y;). This easily implies that M(Y") is a product of M(X) iff M(Y;) = M(X) as
M (X)-algebras for all i. But by equivalence of categories M(Y;) =~ M(X) holds iff 7; is an isomorphism.

(b) First we prove an analogue of Exercise 2.2 for fields:

Lemma Let K be a perfect field and let L be its finite extension. Then L/K is Galois iff the étale
K-algebra L ® L is isomorphic to a finite product of copies of K.

Proof: let L = K[z]/(f(z)) and let f =[], f; be decomposition into irreducible factors over L. Then
by Chinese Remainder Theorem:

L@k L = K[z]/(f(z)) @« L = L[z]/(f(z)) = HL[x]/(fj(x)).

Note that for all j, L[x]/(f;(x)) is a field, since f; is irreducible over L and thus (f;) is a prime (and
maximal, since L[z] is a PID) ideal.

But L[z]/(f;) = K iff deg f; = 1. Thus L ®x L is isomorphic to a finite product of copies of K iff
deg f; = 1, which is equivalent to L being a Galois extension of K.

Lemma Y xx Y — Y is a branched cover and Y’ x x» Y — Y is a cover. Moreover:

Proof: ”left as an exercise”.

Now, Y’ — X' is a Galois cover iff Y’ x x, Y is a trivial cover iff (by (a)) M(Y xxY) = M(Y)®@p1(x) M(X)
is isomorphic to a finite product of copies of M(X) iff (by Lemma) M(Y)/M(X) is a Galois extension.

3.4 Suppose to the contrary that there is only one branch point. Then from the Riemann-Hurwitz formula:

29y —2=d-(2:0-2)+ > (ep—1).
Qer—1(P)

On the other hand, },5c.-1(p)ep = d. Thus:
D1 (ep—1)=d—#r(P)
Qen—1(P)

and

cl—#ﬁ_l(P)_1 d+ #771(P)
2 T 2 '

Since gy = 0, we must have d = #7~!(P) = 1. But this means that P is not a branch point, and Y — X is a

gy=1—d+

cover of degree 1, i.e. an isomorphism! This ends the proof.

3.5 From errata: the problem should be formulated like this:
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Let n € Z, and consider the dihedral group D,,. Show that every complex torus X = C/A has a Galois branched
cover Y — X with group D,,, which:
e has 4 branch points when n = 2m is even (each of ramification index m)

e has 2 branch points when n is odd (each of ramification index n).

Remark: In fact, the two cases follow from the fact that:

Z/m, n=2m
D! ={(0?) = /
Z/n, 2fn.
Solution: Let P € X be a point in the middle of the fundamental parallelogram. Let also X’ := X\{P}. First,
we’'ll show that m (X', 2) = Z +* Z = {a, b).

Indeed, note that X’ is homotopic to S' A S'. To show it, consider the fundamental parallelogram of X with one
point P in the interior removed. Then we can retract the rest of the parallelogram by projecting from P onto
the perimeter of the parallelogram. But the parallelogram is clearly homeomorphic to S' A S1. By Seifert-van
Kampfen theorem, 71(S! A S, ) = Z % Z.

To recover the ramification indices of the cover we will need the following lemma:

Lemma Let X be a connected compact Riemann surface, S ¢ X — a finite set and X’ := X\S. Let Y’ — X’
be a topological cover and 7 : Y — X — the corresponding (by Theorem 3.2.7) branched cover of Riemann
surfaces. Let Z be the 71 (X', x)-set corresponding to the cover Y/ — X’.

Fix any P € S and let [y] € m1 (X', z) be a loop around P. The following quantities are equal:

e set of ramification indices {eg : Q € 7~1(P)} (correspondingly #r~1(P)),

e {ni,...,n,} (correspondingly r), where the cover Y’ — X’ restricted to 7 is of the form Yy uYo ...

Y, — X', where Y; is a connected n;-fold cover of the circle -y,

e lengths of orbits of Z under the action of {y) (correspondingly number of orbits).

Proof: follows at once from the construction of Y from Y.

The epimorphism

corresponds to a D,, Galois cover Y/ — X’. By Theorem 3.2.7 this extends uniquely to a branched cover Y — X
of connected compact Riemann surfaces. Let Z be the w1 (X', x)-set corresponding to the cover Y’ — X’; we can
identify Z with D,,.

The loop around P will be aba='b~! € my (X', z). Note that aba~1b! acts on Z as

oro trt =5

We will consider now two cases, corresponding to parity:

o n=2m:
Then there are four orbits of action of 02 on Z = D,,:

6 2m72}
)

{e,d%, 0% 0% ... 0 7 2m—1y

{0,0%,0% 0", ... 0

)

2 4 2m—2}
’

{r,70%, 10%,...,TO 5 2m’_1}.

{ro,70% 10°,7,... 70

each of cardinality m.
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e 2fn:
Then there are two orbits of action of 02 on Z = D,, (since (02?) = (0)):

n—l}

{e,0,0% ..., 0 . Ar, 10,10, ... T

each of cardinality n.
Using the above lemma, this ends the proof.

3.6 (a) The Riemann-Hurwitz formula with gx = gy = 1 becomes:

0=0+ > (ep—1)

PeX
and thus ep = 1 for every P € X.
(b) Let b e C be an arbitrary lift of b := ¢(0 + A) € C/A’. Consider the diagram:

X=C
(E /)l

““gop

Z=C-22 X —C/N

Since X — X is the universal cover, there exists a unique lift of pop: Z =C — X = C/A’ to qg :Z=C—
X=C.
(c) & (d) It is easier to prove directly that a(z) = az + b than to follow the path suggested by Szamuely. Note that

for any I € A, ¢(z + 1) — ¢(z) € I'. Therefore, since I" is discrete and ¢ continuous:

Sz +1) —d(z)=c(l) (v)

for some ¢(l) € T. Let I’ = Z7; @ Z72. By using (x) for 7; and differentiating it, we see that ¢ :C—>C
is a holomorphic, doubly periodic function. Therefore it is bounded (since its values are determined by the
values on the fundamental domain of C/A) and must be constant by Liouville theorem. This immediately
implies that (Z(z) = az + b. One easily sees that (Z is induced by map of tori iff aA + b < A'.

3.A Let X be a connected and locally simply connected topological space and let p : Y — X be a connected cover
of degree d. Show that:

(a) pis Galois, if d = 2.
(b) There is an explicit example of a connected cover p: Y — X such that d = 3 and p is not Galois.

(¢) If d = 3 and p is not Galois then Aut(Y/X) = {idy}.
Solution:

(a) We have to show that Aut(Y/X) acts transitively on fibers. We construct an element ¢ € Aut(Y/X) in the
following way: for any y € Y, let z := p(y) € X and let p~!(z) = {y,y'}. Then we put o(y) := y’. It suffices
to check that ¢ defined in this way is continuous. With the above notation, we may choose a neighbourhoods
U,U’, V of y,y, x respectively such that p|yy : U — V and p|yr : U’ — V are homeomorphisms. It is obvious
that ¢|y = (p|y-)~!. Thus ¢ is continuous. From the construction it follows that ¢ € Aut(Y /X) and that
Aut(Y /X) acts transitively on fibers (since ¢ takes one point in the fiber to the second point).

(b) Consider the map P1(C) — P!(C), z — 2% + 2. On the level of the function field this corresponds to the
extension C(t)[z]/(2% 4+ z —t) of M(P!(C)) = C(t). But this extension is non-Galois, since the discriminant
of the polynomial z® + z — t € C(¢)[2] is not a square (standard Galois theory). It suffices to note that the
covering is Galois, if and only if the corresponding extension of function fields is Galois.

(c) Again, it suffices to prove that if L/K is a non-Galois extension of fields of degree 3 then Aut(L/K) =
{idp}. Let M := LAY L/K) Then L/M is a Galois extension of degree #Aut(L/K). On the other hand:
[L: M]|[L: K] =3. Thus, since M # K, [L: M] = 1. This ends the proof.

3.B Let X be a connected and locally simply connected topological space. Let also « € X and suppose that m (X, z)
is finite. Prove that every continuous map f : X — S! is homotopic to a constant map.

Solution: Suppose we are given f : X — S!. We'll use the following (classical) lifting criterion:
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Lemma (the lifting criterion) Let p : Z — Y be a cover and let f : X — Y be a continuous map.
Let also z € X, y := f(v) € Y and z € p~1(y). The lift of f to f: X — Z such that f(x) = z exists iff
fe(m(X,2)) € pe(m1(Z, 2)).

null-homotopic.

5.A Problem: Let X = SpecZ,) = {n,(p)} and consider the maps:

i:SpecF, — X.

(a) Prove that 7 (7) is injective.

quotient of 71 (X, %) by the normal subgroup generated by 71 (¢)(71(SpecFp)).

Solution:

In our case take X as in the assumption, ¥ = S!, Z = R and Z — Y - the covering map. Note that f, (7 (X, ))
is a finite group, which is a subgroup of Z and thus it is trivial. Thus the assuptions of the lifting criterion are

satisfied and we have a lift f: X > R. f is clearly null-homotopic, since R is contractible. Therefore, f is also

(b) If K is the composite of finite extensions L/Q such that p splits completely in L then Gal(K/Q) is the

(a) Firstly, let us describe the morphism Gr, — 71(X, 7). Let T be the geometric point 7 : SpecQ — X, let 7

— the geometric point § : Spec Fp — SpeclF, and Z — the geometric point 7 : Specﬁp — X. Note that we

have canonical isomorphisms:
m(X,T) = Gal(F/Q), 71 (SpecF,, ) = Gal(F,/F,)
(where F is the maximal extension of Q unramified outside of p) and an isomorphism

(X, 7) 2 m(X,2),

which depends on the choice of the "path” between T and Z. We will now describe this choice. Suppose
that F' = |J,, Fy, where F,/Q are finite Galois extensions, Fy = Q and F,, € Fj,;1. The choice of the
path consists of choosing primes p € Spec O, such that py = p, ppi1|pn. Since p,, are unramified, the

decomposition groups D(p,) < Gal(F,/Q) are canonically isomorphic to Gal(Fy,/F,), i.e. we obtain
monomorphism:

Gal(F,,/F,) — Gal(F,/Q). ()

a

Note that | J,, Fy, = F,, as there are finite Galois extensions L/Q unramified at p[p and such that [k(p) : Fp]

is arbitrarly large (take for example suitable cyclotomic extensions). Thus by taking the direct limit in (
we obtain the desired map and we see that it is a monomorphism.

(b) Let N be the largest normal subgroup of 71 (X, %) containing the image of 71 (SpecF,, 7). Let

N, :=1im <N c Gal(F/Q) —» Gal(Fn/Q)).

Note that FN» is (by the very definition) the largest subextension of F,,/Q, which is Galois over Q and

*)

in

which the Frobenius acts trivially. But the Frobenius acts trivially in a Galois extension if and only if p

splits completely! Thus
FN = JEY

is the largest subextension of F'/Q, which is Galois over Q and in which p splits completely. Equivalently,

FN = K (since every extension in which p splits completely is contained in a Galois extension, in which p

splits completely) and N = Gal(F/K). By the standard properties of Galois groups we obtain the desired

short exact sequence:
0> N = Gal(K/F) - Gal(K/Q) — Gal(F/Q) — 0.
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Problem: Let
X = Spec(Clz,yl/(y* — 2°))

be the cuspidal cubic curve over C. Prove that any finite connected étale cover of X is trivial, i.e. that m (X, z) =
0.

Hint: Consider the normalization of X: X — X, given by:
¢: X = Spec(C[t]) » X, t (3,17)

Show that ¢ is a bijection. Show that for any finite connected étale cover ¥ — X the induced base change

Y xx X >Yisa bijection. Deduce that such a Y must be a trivial cover.

Solution: Let
¢: X = Spec(C[t]) » X, t (2,17)

be the normalization of X. Note that ¢ is a bijection, since the inverse function might be given by:

g(:c,y) =

(note that ¢ is a morphism on X\{(0,0)}, but not on (0,0)). Let ¢ : Y — X be a connected finite étale cover.
Consider Y := Y x x X. Note that the natural map h : Y >Yisa bijection (on closed points). Indeed:
V(€)= {(@y) e X(C) x Y (C): 6(2) =)}, h(@.y) =y

and thus the inverse of h is given by y — (g(%(y)), y). We'll use the following simple lemma:

Lemma Suppose that h : Y — Y is a continuous bijection of topological spaces, which is an open map. If
Y is connected, then Y also.

Proof: let Y = U; L Us be a decomposition into disjoint open sets. Then Y = h(U;) L h(Us) (note that
h(?) = Y; the sum is disjoint, since h is injective), and since Y is connected, we have h(U;) = @ or
h(Usz) = @. But, since h is a bijection, U; = @ or Uy = &, which ends the proof.

(note that h : Y - Yis open, since open sets are precisely the complements of finite sets). Also, since base
chenge of an étale morphism is étale, ¥ — X is a connected finite étale cover of X = Al. But m(A}) = 0 and
thus ¥ — X must be a trivial cover, i.e. an isomorphism! This easily implies that Y — X is a trivial cover.
Indeed, it suffices to check that Y — X is a bijection (on closed points), since a finite étale cover of degree 1
is an isomorphism. Let € X (C) and denote ¥ := g(z) € X(C). Then, since ¥ — X is a bijection, there exists
precisely one y € Y(C) such that ¢(Z) = ¥(y), i.e. ¢ = ¢ (y). This ends the proof.

Let X = Spec(C[z,y]/(y* — 2° — 2?)). Show that
(X, n) = Z.
Solution: (loosely based on Jacob Tsimerman’s notes: http://www.math.toronto.edu/ jacobt/Lecture7.pdf)

Firstly, we have to find the normalization of X. Blow up X at 0, by setting y = = - u and compute the strict
transform:
(zu)? =22 (z+1) = w=z+1

The curve u? = z + 1 is clearly isomorphic to Al via t — (u(t),z(t)) := (¢,#* — 1). Finally, we obtain a
normalization:
¢: X :=SpecC[t] - X, tw— (y(t),z(t)):=(t- (> —1),¢2 —1).

Let ¢ : Y — X be a connected finite étale cover. Consider Y=Y xx X. Again, as in Problem B, m; (}7) =0

and thus the cover ¥ — X must be of the form
~ n ~ ~
Y ~ |_| X; — X,
i=1

where )Z'Z are copies of X. Denote the embedding X - LI, X’Z on the i-th component by p;.
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Let P:= (0,0) € X, 41, ..., yn € "1 (P). Note that 1~ (P) = {—1,1}. Note that X — X is an isomorphism out
of (0,0) € X(C) and therefore Y — Y is an isomorphism out of y1, . .., yn. Moreover, over each y; there must be
two points in Y, that must be of the form Pa; (—1) € )N(ai, p, (1) € )N(bi. In other words, the topological space of
Y is form~ed from Y = LI, )N(z by taking a point —1 on each copy of X and glueing with a point 1 on a diffefent
copy of X. Note that Y is connected — thus without loss of generality we may renumerate the copies of X in
such a way that —1 on )NCZ is glued to 1 on )?Z-H (where we put )N(,Hl = X’l)

Consider now the scheme formed by glueing X in such a way. It is given by:

Y= SpeCRn; R, = {(Pla tey Pn) € Hc[tz] : Pl(_]‘) = -Pz+1(]-)}
i=1
We'll show that ¥ : Y/ — X is finite étale. Recall that an equivalent definition for this is that ¥,Oy- is a locally

free Ox-module (of finite rank) and fiber over each P € X is a spectrum of a finite étale x(P)-algebra.

Lemma The normalization homomorphism:

Clz,7] := Clz,y)/(y* —2® —2®) > C[t], (z.y) = (£* ~1,t-(* ~ 1))
identifies C[Z, 7] with the ring:
A= {f(t) e C[t]: f(=1) = f(1)}.

Slogan: ,nodal curve is A' with —1 and 1 identified”.
Proof: 77

Note that out of (0,0), Y3 — X is a trivial covering by n copies of X\{(0,0)}. Thus it suffices to check the
neighbourhood of (0,0) (corresponding to ¢ = +1). Indeed, let W; € C[¢t] be arbitrary polynomials such that
W;(1) =1, Wi(=1) = ¢ (i = 0,...,n —1). Let S be the multiplicative set generated by elements W;. Then
STIR, is a free S~ A-module of rank n with basis given by:

bi = (Wz(t)v CfLW’i (t)a CELZWZ (t)7 o 7(7(Ln71)iWi (t))
(one easily checks that b; € R,,). Indeed, for any (Py,..., P,—1) € Ry, let:

1 n—1 i
Qi = ’I’LWZ(t) j;ogn JP](t)

Then @; € A and
n—1
(Pr,. o Pa) = ) Qi(t) - bs.
1=0

Note also that the fiber over (0, 0) is of degree n and contains n points. Thus it must be the spectrum of [}, C.
This means that Y’ — X is étale.

Finally, Y’ and Y are both étale over X, and thus Y’ is étale over Y of degree 1, and thus Y’ =Y.

This proves that every cover of X is of the form Spec R,, — X with automorphism group Z/n (it suffices to see
what are the automorphisms of the fiber over (0,0) — those are cyclic permutations (1,2,...,n), which take one
copy of X’Z and map it to the next copy). This means that

m(X,ZT) = imZ/n = Z.
Remark: usually one glues schemes along open subschemes, but affine schemes may be always glued along
closed subschemes, cf. Schwede, Gluing Schemes and a Scheme Without Closed Points.
5.D Problem:

(a) Show that




(b)
()
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Deduce that 71 (Spec(C((t))),Z) = Gal(C((¢))/C((t)))
Show that 7 (AL\{0},T) = Z.

1l
N

Solution:

(a)

Note that C((¢)) is a complete local field. Therefore every its unramified algebraic extensions are in bijection
with the algebraic extensions of the residue field (a standard fact, cf. 7?77?). But since its residue field is
algebraically closed, every extension of C((¢)) must be totally ramified. Let K/C((t)) be a finite extension

of degree n and let ux be the uniformizer in K. Then, since it is totally ramified, ord(u%) = 1, i.e.
uf =t - (¢ + (higher powers) ),

where ¢ € C*. But by Hensel’s lemma, every element h € Ok such that ord(h) = 0 has an nth root. In
particular, we can find an element u € Ok such that u™ = ¢+ (higher powers) . Then (ug/u)™ = t and this
easily leads to K = C((t¥/™)).

This is immediate, since C((t)) = J,,>, C((t'/™)), Gal(C((t"™))/C) = Z/n and lim Z/n = Z.

Intuitively, this is clear — C((¢)) is “an infinitesimal punctured disc”, and thus it should be ”homoto-

pic” to A£\{0}. However, I have no idea, how to make this precise. Instead, I have another solution (cf.

https://math.stackexchange.com/questions/42410/finite-etale-maps-to-the-line-minus-the-origin):

let p: Y — X := AL\{0} be a connected finite étale cover. Then one can ”complete” it to a cover of smooth

affine curves: p: Y — X = PL. An easy application of Riemann-Hurwitz yields:
207+ #p~1(0) + #p ' (0) = 2,

and thus g5 = 0, #p~1(0) = #p~'(0) = 1. Therefore Y = P{. But the maps P{ — PL are the rational
maps, and they may be ramified at 0 and oo with ramification index 1 iff p(z) = ¢ 2™. This map is étale
over X, as can easily be seen. This easily shows that Aut(Y/X) = Z/n and

(X, Z) = lim Aut(Y/X) = imZ/n = Z.



