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1 Galois Theory of Fields

1.2 Let G “ limÐGi be an inverse limit of an inverse system of finite groups. Let Gppqi denote the corresponding
p-Sylow subgroup. Define Gppq :“ limÐG

ppq
i . Clearly, it is a pro-p-subgroup of G. By the following lemma, any

quotient of ?????

Lemma If H “ limÐHi, where Hi are finite groups of order non-divisible by p, then for any quotient N of
H one has Hi � N for some i.
Proof: let pi : H � Hi be the canonical projection. Suppose that p : H � N , where N is a finite group.
The ker p is an open neighbourhood of identity and thus it contains ker pi for some i. Thus Hi – H{ ker pi �
H{ ker p – N . This ends the proof.

1.3 Let K :“ ksep. The given conditions on kppq are equivalent to GalpK{kppqq being the pro-p-Sylow-subgroup of
GalpK{kq. Thus we have to show that if Gppq is the pro-p-Sylow-subgroup of G :“ GalpK{kq then it is closed.
Let K “ limÑKn, where Kn{k are finite Galois and Kn Ă Kn`1. Then Gppq “ limÐGalpK{Knq

ppq. Let Hn Ă G

be the inverse image of GalpK{Knq
ppq under

GalpK{kq� GalpK{Knq.

Then Hn is closed in G. But (since Hn Ą Hn`1) Gppq “ limÐHn “
Ş

nHn is closed as an intersection of closed
subsets.
This extension doesn’t have to be unique, since the pro-p-Sylow subgroup is determined only up to conjugation.

1.4 (a) Denote the compositum of all quadratic extensions of Q by Qp2q. Let ppiqi be the sequence of all primes
and Qn :“ Qp

?
´1,

?
p1,
?
p2, . . . ,

?
pnq. Then:

• Qp2q “ limÑQn,

• GalpQn{Qq “ pZ{2qn`1.

Thus GalpQp2q{Qq “
ś8

i“1 Z{2. This group clearly has 2ℵ0 elements and 2ℵ0 subgroups of index 2 (...???).

(b) Note that open subgroups of index 2 of GalpQp2q{Qq correspond bijectively to quadratic extensions of Q.
But there is only countably many of them (they correspond bijectively to Qˆ{Qˆ2 “ x´1, p1, p2, . . .y –
À8

i“1 Z{2). And there is uncountably many subgroups of index 2 in GalpQp2q{Qq!

1.7 Let A :“ Abk k.

(a) If A “ krGs, then A clearly satisfies the given conditions. Suppose now that A satisfies the given conditions.
Let n :“ #G, A “

śn
i“1 k and let e1, . . . , en be the orthogonal idempotents. Fix a g P G and note that

ge1, . . . , gen are again orthogonal idempotents. Indeed,

pgeiq ¨ pgejq “ gpeiejq “

$

&

%

gei, i “ j

0, i ‰ j.

Thus (from the uniqueness of n-tuples of orthogonal idempotents) g permutes the orthogonal idempotents:
gei “ eσgpiq for some σg P Sn. Consider the element x :“

ř

gPG ge1. Clearly, x P A
G
“ k and thus

1
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ř

gPG eσgp1q “ c “
řn
i“1 cei. However, this means that c “ 1 and tge1 : g P Gu “ te1, . . . , enu. Consider the

homomorphism of G-algebras:

krGs Ñ A,
ÿ

gPG

agg ÞÑ
ÿ

gPG

agg ¨ e1.

From the above considerations, it is surjective and is between vector spaces of the same dimension. Thus it
is an isomorphism.

(b) (I believe that the action of G and Galpkq have to commute).

We have to show that for an étale k-algebra A, HomkpA, ksq is a transitive G-set if and only if A is a Galois
G-algebra. Note that if G acts on HomkpA, ksq, then G acts on A. Indeed, then A – A

˚˚
“ HomkpA, kq

˚

and thus G acts k-linearly on A. Since actions of G and Galpkq commute (where the action on A is given by
σpabxq :“ abσpxq – so that A

Galpkq
“ A), the action of G descends to A: if a P A then for any σ P Galpkq,

g P G:
σpgpab 1qq “ gpσpab 1qq “ gpab 1q

and thus gpab 1q P A
Galpkq

“ A.

From (a) one easily sees that a G-algebra is Galois if and only if G acts simply transitively on the maximal
set of orthogonal idempotents. But HomkpA, ksq – HomkpA, kq “ te˚1 , . . . , e

˚
nu, where pe˚i q is the dual

basis the the orthogonal idempotents. But G acts simply transitively on pe˚i q if and only if it acts simply
transitively on peiq. This ends the proof.

1.8 (a) Note that if Galpkq acts on S via even permutations then it acts on ∆pSq trivially. But the trivial Galpkq-set
on two elements clearly corresponds to k ˆ k.

Suppose now that action of at least one element of Galpkq induces an odd permutation of elements in S.
Then G acts non-trivially on ∆pSq and therefore (since #∆pSq “ 2) it is a transitive Galpkq-set of order 2.
Thus by Galois correspondence, it corresponds to some extension of k of degree 2.

(b) Let α1, . . . , αn be the roots of f . Note that then we can identify S – HomkpA, ksq with tα1, . . . , αnu (as
Galpkq-sets). Note that dpfq “

ś

iăjpαi ´ αjq
2 (it is the discriminant of f). Thus

a

dpfq “
ś

iăjpαi ´ αjq.
1 It is straightforward that for any g P Galpkq we have:

gp
a

dpfqq “

$

&

%

a

dpfq, if g acts as an even permutation on S,

´
a

dpfq, if g acts as an odd permutation on S.

This shows that Homkp∆pAq, ksq – t´
a

dpfq,
a

dpfqu (isomorphism of Galpkq-sets) is isomorphic as a
Galpkq-set to ∆pSq. This ends the proof.

2 Fundamental groups in topology

2.1

Lemma If Y is a Hausdorff space and x1, . . . , xn P Y are pairwise different, then there exist paiwisely
disjoint open sets U1, . . . , Un such that xi P Ui.
Proof: By the Hausdorff property, we may find open sets Vij such that xi P Vij , Vij X Vji “ ∅. It suffices
to take:

Ui :“
n
č

j“1
j‰i

Vij .

Let G “ tg1, . . . , gnu and take any y P Y . By lemma, we may find pairwise disjoint Ui such that gi ¨ y P Ui (note
that by assumption, g ¨ y1, . . . , gn ¨ y are pairwise dijoint). Define:

U :“
n
č

i“1

g´1
i Ui.

Then clearly, y P U and giU X gjU Ă Ui X Uj “ ∅ for i ‰ j.

1we choose one root, another is ´
ś

iăjpαi ´ αjq
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2.2

(Should be (?): ... if and only if the natural map

Y ˆGÑ Y ˆX Y, py, gq ÞÑ py, g ¨ yq

is a homeomorphism.)

Recall that
Y ˆX Y “ tpy1, y2q P Y ˆ Y : πpy1q “ πpy2qu.

Suppose that π : Y Ñ X is a Galois cover. Then G acts freely and transitively on every fiber, in particular for
any y1, y2 such that πpy1q “ πpy2q we may define y2 ¨ y

´1
1 P G (in other words, fibers are principal homogeneous

spaces under G). Thus we have mutually inverse homeomorphisms:

Y ˆX Y – Y ˆG

py1, y2q ÞÑ py1, y2 ¨ y
´1
1 q

py1, g ¨ y1q Ð[ py1, gq.

Suppose now that the natural map

Y ˆGÑ Y ˆX Y, py, gq ÞÑ py, g ¨ yq

is a homeomorphism. Then G clearly acts transitively on fibers of π and thus π : Y Ñ X is Galois.

2.3 (a) We want to show that p˚ : π1pY, yq Ñ π1pX,xq, rγs ÞÑ rp ˝ γs is an injection. Suppose that rγs P ker p˚. Let
f : r0, 1s ˆ r0, 1s Ñ X, f0 “ p ˝ γ, f1 “ ιx (the constant path at x) and suppose that f keeps the endpoints
fixed. Use the homotopy lifting property for coverings: to obtain a homotopy rf : r0, 1s ˆ r0, 1s Ñ Y lifting
f such that rf0 “ γ. Note that rf1 is a path lifting ιx, thus we must have rf1 “ ιy. It is easy to check that rf

must keep the endpoints fixed. This yields: rγs “ 0.

(b) By the universal property of π : rXx Ñ X:

FibxpY q – Homp rXx, Y q.

Thus y P p´1pxq corresponds to a map rp : rXx Ñ Y such that rpprxq “ y and π “ p˝rp. The last equality implies
that rp is a covering of Y (by Lemma 2.2.11). Note that rXx is a universal cover of X and thus it is simply con-
nected. But this means that rp : rXx Ñ Y is the universal covering of Y . Therefore π1pY, yq

op – Autp rXx{Y q ãÑ

Autp rXx{Xq and (since universal cover is always normal) Y – Autp rXx{Y qz rXx – π1pY, yq
opz rXx.

2.4 (a) Let m : G ˆ G Ñ G be the multiplication map. Note that rGe ˆ rGe is simply connected and thus may be
identified with the universal cover ČpGˆGqpe,eq.

We want to find such a group law rm : rGe ˆ rGe Ñ rGe that the diagram:

rGe ˆ rGe rGe

GˆG G

Ăm

πˆπ π

m

is commutative (this is equivalent to π being a homomorphism). In order to do this, it suffices to choose
(using the universal property of the universal cover rGe) the unique rm : rGe ˆ rGe Ñ rGe lifting

m ˝ pπ ˆ πq : rGe ˆ rGe Ñ G

such that rmpre, req “ re.

(b) Suppose that rm1 : rGe ˆ rGe Ñ rGe also satisfies the assumptions. Then rm1 lifts m ˝ pπ ˆ πq (from the above
commutative diagram) and rm1preq “ re. Thus rm1 “ rm, since there exists a unique such lift.

(c) By the definition of a cover, the map π : rGe Ñ G is surjective. Note that kerπ “ π´1peq and we have a
bijection of groups

π´1peq – Autp rXx{Xq

fpreq Ð[ f

(which is an isomorphism of abstract groups, by functoriality of this isomorphism) and moreoverAutp rXx{Xq –

π1pX,xq
op. This ends the proof.
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2.6 (a) Let p : rX Ñ X ˆX, p∆ : rX∆ Ñ X. By the set-theoretical description of pullback:

rX∆ “ tprγs, xq P rX ˆX : pprγsq “ ∆pxqu

“ tprγs, xq P rX ˆX : pγp0q, γp1qq “ px, xq

“ trγs P rX : γp0q “ γp1qu,

which easily yields the identification p´1
∆ pxq “ π1pX,xq.

Monodromy action: let rωs P π1pX,xq and rγs P p´1
∆ pxq “ π1pX,xq. Consider the path f : r0, 1s Ñ rX∆,

given by:
fptq “ rωptxq ‚ γpxq ‚ ω´1ptxqs.

Note that for a fixed t, the endpoints of fptq P rX∆ are pωptq, ωptqq and thus p∆,˚f “ ω. Moreover, fp0q “ rγs
and fp1q “ rω ‚ γ ‚ ω´1s. Thus the monodromy action of ω on γ is

ω ‚ γ ‚ ω´1.

(cf. also ex. 7(b)).

(b) Let Y Ñ r0, 1s be an arbitrary cover. We want to explicite the isomorphism Y0 – Y1. Let w : r0, 1s Ñ r0, 1s
be the identity path. Then for any a P Y0, we may define w‹a P Y1 by taking rw : r0, 1s Ñ Y to be the unique
lift of w such that wp0q “ a and defining w ‹ a :“ rwp1q (the ”path-monodromy action”). It is immediate
that a ÞÑ w ‹ a gives an isomorphism Y0 – Y1 (the inverse map is b ÞÑ w´1 ‹ b).

In our case:
Y “ f˚ rX∆ “ tprγs, tq P rX∆ ˆ r0, 1s : γp0q “ γp1q “ fptqu.

Fix rγs P pf˚ rX∆q0. Then rw (as above) is given by the formula rw : r0, 1s Ñ Y :

rwptq :“ prfptxq ‚ γpxq ‚ fptxq´1s, tq.

Indeed, for a fixed t, rwptq is a loop in X with the endpoint being fptq. Thus under the isomorphism Y0 – Y1,
γ maps to

rwp1q “ prf ‚ γ ‚ f´1s, 1q.

This ends the proof.

2.7 (a) The map m is the composition of paths, i is the inverse path, e : X Ñ rX is the constant path at a given
point. The listed properties are immediate.

(b) Let π : rX Ñ X. Fix any rγs P π´1ppx, xqq, i.e. a loop on X at x. Consider the path f : r0, 1s Ñ rX, where
fptq P rX is the path

fptqpxq “ rγ1ptxq ‚ γpxq ‚ γ2ptxq
´1s.

with beggining and end given by γ1ptq and γ2ptq respectively. Then π ˝ f “ pγ1, γ2q and thus it lifts the
path pγ1, γ2q. Therefore the effect of the monodromy action of pγ1, γ2q on rγs “ fp0q is

fp1q “ rγ1pxq ‚ γpxq ‚ γ2pxq
´1s.

This ends the proof.

(c) Let us introduce some notation. Suppose that g : Y Ñ Z is a cover. Denote:

• for any path γ : r0, 1s Ñ Z, z :“ γp0q P Z, rz P g´1pzq, let γ ‹ rz :“ rγp1q, where rγ : r0, 1s Ñ Y is the
unique lift of gamma such that rγp0q “ rz, (”path-monodromy action”)

• ia – constant path at a,

• mΠ, etc – grupoid operation on Π.

Let Π Ñ X ˆX be a grupoid cover. Define Φ : rX Ñ Π by:

Φprγsq :“ piγp0q, γq ‹ eΠpγp0qq

(note that paths on X ˆ X are pairs of paths on X). We have to check that it is compatible with mΠ :
ΠˆX Π Ñ Π.
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Note that the ”path-monodromy action” of X ˆX on ΠˆX Π is given by:

pγ1, γ2q ‹ px1, x2q “

ˆ

pγ1, ib1q ‹ x1, pia2 , γ2q ‹ x2

˙

(where pspxiq, tpxiqq “ pai, biq). Note that mΠ : ΠˆX Π Ñ Π is a map of X ˆX spaces and commutes with
the ”path-monodromy action” of X ˆX, i.e.:

pγ1, γ2q ‹mpx1, x2q “ m

ˆ

pγ1, γ2q ‹ px1, x2q

˙

“ m

ˆ

pγ1, ib1q ‹ x1, pia2 , γ2q ‹ x2

˙

. p˚q

Therefore:

mΠpΦprγ1sq,Φprγ2sqq “ mΠ

ˆ

piγ1p0q, γ1q ‹ eΠpγ1p0qq, piγ2p0q, γ2q ‹ eΠpγ2p0qq
˙

(by p˚q)

“ pγ1, γ2q ‹mΠ

ˆ

pγ´1
1 , γ1q ‹ eΠpγ1p0qq, eΠpγ2p0qq

˙

(since m ˝ pe, idq “ id)

“ pγ1, γ2q ‹

ˆ

pγ´1
1 , γ1q ‹ eΠpγ1p0qq

˙

“

ˆ

pγ1, γ2q ‚ pγ
´1
1 , γ1q

˙

‹ eΠpγ1p0qq

“ piγ1p1q, γ2 ‚ γ1q ‹ eΠpγ1p0qq

“ Φprγ2 ‚ γ1sq

Remark: this is small mistake – the result should be the equality mΠpΦprγ1sq,Φprγ2sqq “ Φprγ1 ‚ γ2sq. In
order to correct it one should trace the whole proof.

2.9 We’ll show that the necessary and sufficient condition is the irreducibility of X. Let s1, s2 P S, s1 ‰ s2.

pðq Suppose that F is a sheaf and that X is reducible, i.e. that there exist open U1, U2 Ă X, which are disjoint.
Consider ps1, s2q P FpU1q ˆ FpU2q. Then s1|U1XU2 “ s2|U1XU2 , since U1 X U2 “ ∅. Thus there should exist
s P FpU1 Y U2q such that s|Ui “ si. This is however impossible, since u1 ‰ u2 and the restricition maps are
identity maps.

pñq Suppose that X is irreducibile, i.e. that any two open subsets of X have non-empty intersection. Suppose
that psiqi P FpUiq and that si|UiXUj “ sj |UiXUj . Then (since UiXUj ‰ ∅ and the restricition maps are identities)
si “ sj . Thus psiq glues to a (unique) element s “ si P S “ Fp

Ť

i Uiq. This proves the sheaf property.

2.10 We want to show that

tp : Y Ñ X – local homeomorphisms u Ø t sheaves on Xu

pp : Y Ñ Xq ÞÑ Secppq

pXF Ñ Xq Ð[ F

(here Secppq is the sheaf of local sections of p) is an equivalence of categories.

• Step I: for any sheaf F , XF Ñ X is a local homeomorphism.

Proof: Let s P XF , s “ rpU, tqs P Fx “ limÐ FpV q. Let also it : U Ñ XF be the map associated to t,
as defined in text. Then itpUq is an open set and moreover p|itpUq is a local homeomorphism – indeed,
p|itpUq ˝ it “ id, it ˝ p|itpUq “ id.

• Step II: For any sheaf F , SecpXF Ñ Xq “ F .

Proof: let p : U Ñ XF be a continuous section of XF Ñ X. Fix a point Q P X and let ppQq “ rpfQ, UQqs P
FQ Ă XF .

Claim: There exists WQ such that p|WQ “ ifQ |WQ .

Proof of the claim: By the definition of topology on XF , ifQpUQq is open. Since p is continuous at
Q, there exists an open set WQ Ă X such that ppWQq Ă ifQpUQq. But p is a section of XF Ñ X and
ifQpUQq contains only one point in fiber over each R P UQ, namely ifQpRq.
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(”if image of one section is contained in the image of another section, they must be equal”)

The Claim easily implies Step II. Indeed, if we show that for Q1 ‰ Q2,

fQ1 |WQ1XWQ2 “ fQ2 |WQ1XWQ2 p˚q

then by the sheaf property we may glue fQ P FpWQq to f P FpUq and then p “ if . But

ifQ1 |WQ1XWQ2 “ p|WQ1XWQ2 “ p|WQ1XWQ2 “ ifQ1 |WQ1XWQ2

easily implies p˚q.

• Step III: For any local homeomorphism p : Y Ñ X, XSecppq – Y .

Proof: note that for every Q P Y there exists a neighbourhood UQ Ă Y of Q such that p|UQ is a home-
omorphism. Let fQ :“ pp|UQq

´1. Then we obtain homeomorphisms:

Y – XSecppq

Q ÞÑ rpfQ, UQqs P SecppqppQq

fpP q Ð [ rpf, Uqs P SecppqP

2.11 Note that any map f : F Ñ G induces a map on stalks, which in turn induces a map f 1 : XF Ñ XG . Thus we
obtain a (unique) map rf : SecpXF q Ñ SecpXGq, rfpsq “ f 1 ˝ s such that the following diagram commutes:

F G

SecpXF q SecpXGq.

f

rf

But in the previous problem we’ve proven that (since G is a sheaf and not merely a presheaf) the natural map
G Ñ SecpXGq is an isomorphism. This ends the proof.

3 Riemann surfaces

3.1 (the map should be proper in order for the problem to make sense)

By Proposition 3.2.1, for every y P ϕ´1pxq there exists a neighbourhood Uy of y and local coordinates at y, x
(which we will both denote as z by abusing the notation) such that ϕ|Uy is in these local coordinates

z ÞÑ zey .

Let U :“
Ş

yPϕ´1pxq Ux (note that this is an open set, since this is a finite intersection). Pick any w P U . On
one hand, #ϕ´1pwq “ n, since U does not contain branch points and ϕ is a cover of degree n outside of the set
of branch points. On the other hand, since in the neighbourhood of y P ϕ´1pxq, ϕ acts as z ÞÑ zey , w has ey
preimages in a neighbourhood of y. In total it has

#ϕ´1pwq “
ÿ

yPϕ´1pxq

ey

preimages. By comparing both results we prove the theorem.

3.2 (a) By Corollary 3.3.12:

HompP1pCq,P1pCqq – HompMpP1pCqq,MpP1pCqqq “ HompCptq,Cptqq.

But by Lüroth theorem, every subfield of Cptq is of the form Cpfptqq for some f P Cptq. This ends the proof.

(b) We’ll prove that

ey “

$

&

%

ordy f
1, y is not a pole of f ,

ordy p1{fq1, y is a pole of f .
.

In particular, the branch points are the zeroes of f 1 and zeroes of p1{fq1.
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Without loss of generality (by applying the automorphism of P1pCq, z ÞÑ 1{z) we may assume that y is
not a pole of f . Then the local coordinates at y and fpyq are obviously z ´ y and z ´ fpyq respectively. It
suffices to note that pz ´ fpyqq ˝ f “ f ´ fpyq “ pz ´ yqe ¨ hpzq, where e “ ordy f

1 and hpyq P Cˆ.

(c) Since f is an automorphism, it is in particular a bijection and thus it has a unique pole and a unique zero.
Moreover, by Riemann-Hurwitz formula,

ř

ypey ´ 1q “ 0 and thus by previous part, both the zero and the
pole are simple. But all rational functions with a single pole and a single zero are of the form at`b

ct`d .

(d) Without loss of generality, suppose fptq “ at`b
ct`d , c ‰ 0. The equation fptq “ t is a quadratic equation and

thus has 1 or 2 solutions.

3.3 (a) Remark 1: I think one has to assume that X is connected.

Remark 2: note that Theorem 3.2.7 easily implies that Y 1 Ñ X 1 is a trivial cover iff Y Ñ X is a trivial
cover, i.e. Y “ Y1 \ Y2 \ . . .\ Yr and p|Yi : Yi Ñ X is a homoeomorphism.

Solution: Let Y “ Y1 \ Y2 \ . . . \ Yr be the decomposition into connected components. All of them
are closed subsets of Y and thus compact. One easily checks that πi : Yi Ñ X are branched coverings
and MpY q –

ś

iMpYiq. This easily implies that MpY q is a product of MpXq iff MpYiq – MpXq as
MpXq-algebras for all i. But by equivalence of categoriesMpYiq –MpXq holds iff πi is an isomorphism.

(b) First we prove an analogue of Exercise 2.2 for fields:

Lemma Let K be a perfect field and let L be its finite extension. Then L{K is Galois iff the étale
K-algebra LbK L is isomorphic to a finite product of copies of K.
Proof: let L “ Krxs{pfpxqq and let f “

ś

j fj be decomposition into irreducible factors over L. Then
by Chinese Remainder Theorem:

LbK L “ Krxs{pfpxqq bK L “ Lrxs{pfpxqq “
ź

j

Lrxs{pfjpxqq.

Note that for all j, Lrxs{pfjpxqq is a field, since fj is irreducible over L and thus pfjq is a prime (and
maximal, since Lrxs is a PID) ideal.
But Lrxs{pfjq – K iff deg fj “ 1. Thus L bK L is isomorphic to a finite product of copies of K iff
deg fj “ 1, which is equivalent to L being a Galois extension of K.

Lemma Y ˆX Y Ñ Y is a branched cover and Y 1 ˆX1 Y Ñ Y 1 is a cover. Moreover:

MpY ˆX Y q –MpY q bMpXqMpXq

Proof: ”left as an exercise”.

Now, Y 1 Ñ X 1 is a Galois cover iff Y 1ˆX1 Y is a trivial cover iff (by (a))MpY ˆX Y q –MpY qbMpXqMpXq
is isomorphic to a finite product of copies ofMpXq iff (by Lemma)MpY q{MpXq is a Galois extension.

3.4 Suppose to the contrary that there is only one branch point. Then from the Riemann-Hurwitz formula:

2gY ´ 2 “ d ¨ p2 ¨ 0´ 2q `
ÿ

QPπ´1pP q

peP ´ 1q.

On the other hand,
ř

QPπ´1pP q eP “ d. Thus:

ÿ

QPπ´1pP q

peP ´ 1q “ d´#π´1pP q

and

gY “ 1´ d`
d´#π´1pP q

2
“ 1´

d`#π´1pP q

2
.

Since gY ě 0, we must have d “ #π´1pP q “ 1. But this means that P is not a branch point, and Y Ñ X is a
cover of degree 1, i.e. an isomorphism! This ends the proof.

3.5 From errata: the problem should be formulated like this:
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Let n P Z` and consider the dihedral group Dn. Show that every complex torus X “ C{Λ has a Galois branched
cover Y Ñ X with group Dn, which:

• has 4 branch points when n “ 2m is even (each of ramification index m)

• has 2 branch points when n is odd (each of ramification index n).

Remark: In fact, the two cases follow from the fact that:

D1n “ xσ
2y –

$

&

%

Z{m, n “ 2m

Z{n, 2 - n.

Solution: Let P P X be a point in the middle of the fundamental parallelogram. Let also X 1 :“ XztP u. First,
we’ll show that π1pX

1, xq “ Z ˚ Z “ xa, by.

Indeed, note that X 1 is homotopic to S1^S1. To show it, consider the fundamental parallelogram of X with one
point P in the interior removed. Then we can retract the rest of the parallelogram by projecting from P onto
the perimeter of the parallelogram. But the parallelogram is clearly homeomorphic to S1 ^ S1. By Seifert-van
Kampfen theorem, π1pS

1 ^ S1, xq – Z ˚ Z.

To recover the ramification indices of the cover we will need the following lemma:

Lemma Let X be a connected compact Riemann surface, S Ă X – a finite set and X 1 :“ XzS. Let Y 1 Ñ X 1

be a topological cover and π : Y Ñ X – the corresponding (by Theorem 3.2.7) branched cover of Riemann
surfaces. Let Z be the π1pX

1, xq-set corresponding to the cover Y 1 Ñ X 1.
Fix any P P S and let rγs P π1pX

1, xq be a loop around P . The following quantities are equal:

• set of ramification indices teQ : Q P π´1pP qu (correspondingly #π´1pP q),

• tn1, . . . , nru (correspondingly r), where the cover Y 1 Ñ X 1 restricted to γ is of the form Y1\Y2\ . . .\

Yr Ñ X 1, where Yi is a connected ni-fold cover of the circle γ,

• lengths of orbits of Z under the action of xγy (correspondingly number of orbits).

Proof: follows at once from the construction of Y from Y 1.

The epimorphism

π1pX
1, xq – Z ˚ Z ÝÑ Dn

a ÞÑ σ

b ÞÑ τ

corresponds to a Dn Galois cover Y 1 Ñ X 1. By Theorem 3.2.7 this extends uniquely to a branched cover Y Ñ X

of connected compact Riemann surfaces. Let Z be the π1pX
1, xq-set corresponding to the cover Y 1 Ñ X 1; we can

identify Z with Dn.

The loop around P will be aba´1b´1 P π1pX
1, xq. Note that aba´1b1 acts on Z as

στσ´1τ´1 “ σ2.

We will consider now two cases, corresponding to parity:

• n “ 2m:

Then there are four orbits of action of σ2 on Z “ Dn:

te, σ2, σ4, σ6, . . . , σ2m´2u, tσ, σ3, σ5, σ7, . . . , σ2m´1u,

tτ, τσ2, τσ4, . . . , τσ2m´2u, tτσ, τσ3, τσ5, τ, . . . , τσ2m´1u.

each of cardinality m.
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• 2 - n:

Then there are two orbits of action of σ2 on Z “ Dn (since xσ2y “ xσy):

te, σ, σ2, . . . , σn´1u, tτ, τσ, τσ2, . . . , τσn´1u.

each of cardinality n.

Using the above lemma, this ends the proof.

3.6 (a) The Riemann-Hurwitz formula with gX “ gY “ 1 becomes:

0 “ 0`
ÿ

PPX

peP ´ 1q

and thus eP “ 1 for every P P X.

(b) Let rb P C be an arbitrary lift of b :“ φp0` Λq P C{Λ1. Consider the diagram:

rX “ C

Z “ C X “ C{Λ1φ˝p

rφ

Since rX Ñ X is the universal cover, there exists a unique lift of φ ˝ p : Z “ CÑ X “ C{Λ1 to rφ : Z “ CÑ
rX “ C.

(c) & (d) It is easier to prove directly that rφpzq “ az ` b than to follow the path suggested by Szamuely. Note that
for any l P Λ, rφpz ` lq ´ rφpzq P Γ1. Therefore, since Γ1 is discrete and rφ continuous:

rφpz ` lq ´ rφpzq ” cplq p˚q

for some cplq P Γ1. Let Γ “ Zτ1 ‘ Zτ2. By using p˚q for τi and differentiating it, we see that rφ1 : C Ñ C
is a holomorphic, doubly periodic function. Therefore it is bounded (since its values are determined by the
values on the fundamental domain of C{Λ) and must be constant by Liouville theorem. This immediately
implies that rφpzq “ az ` b. One easily sees that rφ is induced by map of tori iff aΛ` b Ă Λ1.

3.A Let X be a connected and locally simply connected topological space and let p : Y Ñ X be a connected cover
of degree d. Show that:

(a) p is Galois, if d “ 2.

(b) There is an explicit example of a connected cover p : Y Ñ X such that d “ 3 and p is not Galois.

(c) If d “ 3 and p is not Galois then AutpY {Xq “ tidY u.

Solution:

(a) We have to show that AutpY {Xq acts transitively on fibers. We construct an element ϕ P AutpY {Xq in the
following way: for any y P Y , let x :“ ppyq P X and let p´1pxq “ ty, y1u. Then we put ϕpyq :“ y1. It suffices
to check that ϕ defined in this way is continuous. With the above notation, we may choose a neighbourhoods
U , U 1, V of y, y1, x respectively such that p|U : U Ñ V and p|U 1 : U 1 Ñ V are homeomorphisms. It is obvious
that ϕ|V “ pp|U 1q´1. Thus ϕ is continuous. From the construction it follows that ϕ P AutpY {Xq and that
AutpY {Xq acts transitively on fibers (since ϕ takes one point in the fiber to the second point).

(b) Consider the map P1pCq Ñ P1pCq, z ÞÑ z3 ` z. On the level of the function field this corresponds to the
extension Cptqrzs{pz3` z´ tq ofMpP1pCqq “ Cptq. But this extension is non-Galois, since the discriminant
of the polynomial z3 ` z ´ t P Cptqrzs is not a square (standard Galois theory). It suffices to note that the
covering is Galois, if and only if the corresponding extension of function fields is Galois.

(c) Again, it suffices to prove that if L{K is a non-Galois extension of fields of degree 3 then AutpL{Kq “

tidLu. Let M :“ LAutpL{Kq. Then L{M is a Galois extension of degree #AutpL{Kq. On the other hand:
rL : M s|rL : Ks “ 3. Thus, since M ‰ K, rL : M s “ 1. This ends the proof.

3.B Let X be a connected and locally simply connected topological space. Let also x P X and suppose that π1pX,xq

is finite. Prove that every continuous map f : X Ñ S1 is homotopic to a constant map.

Solution: Suppose we are given f : X Ñ S1. We’ll use the following (classical) lifting criterion:
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Lemma (the lifting criterion) Let p : Z Ñ Y be a cover and let f : X Ñ Y be a continuous map.
Let also x P X, y :“ fpxq P Y and z P p´1pyq. The lift of f to rf : X Ñ Z such that rfpxq “ z exists iff
f˚pπ1pX,xqq Ă p˚pπ1pZ, zqq.

In our case take X as in the assumption, Y “ S1, Z “ R and Z Ñ Y – the covering map. Note that f˚pπ1pX,xqq

is a finite group, which is a subgroup of Z and thus it is trivial. Thus the assuptions of the lifting criterion are
satisfied and we have a lift rf : X Ñ R. rf is clearly null-homotopic, since R is contractible. Therefore, f is also
null-homotopic.

4

5.A Problem: Let X “ SpecZppq “ tη, ppqu and consider the maps:

i : SpecFp Ñ X.

(a) Prove that π1piq is injective.

(b) If K is the composite of finite extensions L{Q such that p splits completely in L then GalpK{Qq is the
quotient of π1pX,xq by the normal subgroup generated by π1piqpπ1pSpecFpqq.

Solution:

(a) Firstly, let us describe the morphism GFp Ñ π1pX,xq. Let x be the geometric point x : SpecQÑ X, let y
– the geometric point y : SpecFp Ñ SpecFp and z – the geometric point z : SpecFp Ñ X. Note that we
have canonical isomorphisms:

π1pX,xq – GalpF {Qq, π1pSpecFp, yq – GalpFp{Fpq

(where F is the maximal extension of Q unramified outside of p) and an isomorphism

π1pX,xq – π1pX, zq,

which depends on the choice of the ”path” between x and z. We will now describe this choice. Suppose
that F “

Ť

n Fn, where Fn{Q are finite Galois extensions, F0 “ Q and Fn Ă Fn`1. The choice of the
path consists of choosing primes p P SpecOFn such that p0 “ p, pn`1|pn. Since pn are unramified, the
decomposition groups Dppnq Ă GalpFn{Qq are canonically isomorphic to GalpFpn{Fpq, i.e. we obtain a
monomorphism:

GalpFpn{Fpq Ñ GalpFn{Qq. p˚q

Note that
Ť

n Fpn “ Fp, as there are finite Galois extensions L{Q unramified at p|p and such that rκppq : Fps
is arbitrarly large (take for example suitable cyclotomic extensions). Thus by taking the direct limit in p˚q
we obtain the desired map and we see that it is a monomorphism.

(b) Let N be the largest normal subgroup of π1pX,xq containing the image of π1pSpecFp, yq. Let

Nn :“ im

ˆ

N Ă GalpF {Qq� GalpFn{Qq
˙

.

Note that FNnn is (by the very definition) the largest subextension of Fn{Q, which is Galois over Q and in
which the Frobenius acts trivially. But the Frobenius acts trivially in a Galois extension if and only if p
splits completely! Thus

FN “
ď

n

FNnn

is the largest subextension of F {Q, which is Galois over Q and in which p splits completely. Equivalently,
FN “ K (since every extension in which p splits completely is contained in a Galois extension, in which p

splits completely) and N “ GalpF {Kq. By the standard properties of Galois groups we obtain the desired
short exact sequence:

0 Ñ N “ GalpK{F q Ñ GalpK{Qq Ñ GalpF {Qq Ñ 0.
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5.B Problem: Let
X “ SpecpCrx, ys{py2 ´ x3qq

be the cuspidal cubic curve over C. Prove that any finite connected étale cover of X is trivial, i.e. that π1pX,xq “

0.

Hint: Consider the normalization of X: rX Ñ X, given by:

φ : rX “ SpecpCrtsq Ñ X, t ÞÑ pt2, t3q

Show that φ is a bijection. Show that for any finite connected étale cover Y Ñ X the induced base change
Y ˆX rX Ñ Y is a bijection. Deduce that such a Y must be a trivial cover.

Solution: Let
φ : rX “ SpecpCrtsq Ñ X, t ÞÑ pt2, t3q

be the normalization of X. Note that φ is a bijection, since the inverse function might be given by:

gpx, yq “

$

&

%

y{x, px, yq ‰ p0, 0q

0, px, yq “ p0, 0q

(note that g is a morphism on Xztp0, 0qu, but not on p0, 0q). Let ψ : Y Ñ X be a connected finite étale cover.
Consider rY :“ Y ˆX rX. Note that the natural map h : rY Ñ Y is a bijection (on closed points). Indeed:

rY pCq “ tprx, yq P rXpCq ˆ Y pCq : φprxq “ ψpyqu, hprx, yq “ y

and thus the inverse of h is given by y ÞÑ pgpψpyqq, yq. We’ll use the following simple lemma:

Lemma Suppose that h : rY Ñ Y is a continuous bijection of topological spaces, which is an open map. If
Y is connected, then rY also.
Proof: let rY “ U1 \ U2 be a decomposition into disjoint open sets. Then Y “ hpU1q \ hpU2q (note that
hprY q “ Y ; the sum is disjoint, since h is injective), and since Y is connected, we have hpU1q “ ∅ or
hpU2q “ ∅. But, since h is a bijection, U1 “ ∅ or U2 “ ∅, which ends the proof.

(note that h : rY Ñ Y is open, since open sets are precisely the complements of finite sets). Also, since base
chenge of an étale morphism is étale, rY Ñ rX is a connected finite étale cover of rX “ A1

C. But π1pA1
Cq “ 0 and

thus rY Ñ rX must be a trivial cover, i.e. an isomorphism! This easily implies that Y Ñ X is a trivial cover.
Indeed, it suffices to check that Y Ñ X is a bijection (on closed points), since a finite étale cover of degree 1
is an isomorphism. Let x P XpCq and denote rx :“ gpxq P rXpCq. Then, since rY Ñ rX is a bijection, there exists
precisely one y P Y pCq such that φprxq “ ψpyq, i.e. x “ ψpyq. This ends the proof.

5.C Let X “ SpecpCrx, ys{py2 ´ x3 ´ x2qq. Show that

π1pX, ηq – pZ.

Solution: (loosely based on Jacob Tsimerman’s notes: http://www.math.toronto.edu/ jacobt/Lecture7.pdf)

Firstly, we have to find the normalization of X. Blow up X at 0, by setting y “ x ¨ u and compute the strict
transform:

pxuq2 “ x2 ¨ px` 1q ñ u2 “ x` 1.

The curve u2 “ x ` 1 is clearly isomorphic to A1 via t ÞÑ puptq, xptqq :“ pt, t2 ´ 1q. Finally, we obtain a
normalization:

φ : rX :“ SpecCrts Ñ X, t ÞÑ pyptq, xptqq :“ pt ¨ pt2 ´ 1q, t2 ´ 1q.

Let ψ : Y Ñ X be a connected finite étale cover. Consider rY :“ Y ˆX rX. Again, as in Problem B, π1prY q “ 0
and thus the cover rY Ñ rX must be of the form

rY –
n
ğ

i“1

rXi Ñ rX,

where rXi are copies of rX. Denote the embedding rX Ñ
Ůn
i“1

rXi on the i-th component by pi.
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Let P :“ p0, 0q P X, y1, . . . , yn P ψ
´1pP q. Note that ψ´1pP q “ t´1, 1u. Note that rX Ñ X is an isomorphism out

of p0, 0q P XpCq and therefore rY Ñ Y is an isomorphism out of y1, . . . , yn. Moreover, over each yi there must be
two points in rY , that must be of the form paip´1q P rXai , pbip1q P rXbi . In other words, the topological space of
Y is formed from rY –

Ůn
i“1

rXi by taking a point ´1 on each copy of rX and glueing with a point 1 on a different
copy of rX. Note that Y is connected – thus without loss of generality we may renumerate the copies of rX in
such a way that ´1 on rXi is glued to 1 on rXi`1 (where we put rXn`1 “ rX1).

Consider now the scheme formed by glueing rX in such a way. It is given by:

Y 1 :“ SpecRn, Rn :“ tpP1, . . . , Pnq P
n
ź

i“1

Crtis : Pip´1q “ Pi`1p1qu.

We’ll show that Ψ : Y 1 Ñ X is finite étale. Recall that an equivalent definition for this is that Ψ˚OY 1 is a locally
free OX -module (of finite rank) and fiber over each P P X is a spectrum of a finite étale κpP q-algebra.

Lemma The normalization homomorphism:

Crx, ys :“ Crx, ys{py2 ´ x3 ´ x2q Ñ Crts, px, yq ÞÑ pt2 ´ 1, t ¨ pt2 ´ 1qq

identifies Crx, ys with the ring:
A :“ tfptq P Crts : fp´1q “ fp1qu.

Slogan: „nodal curve is A1 with ´1 and 1 identified”.
Proof: ??

Note that out of p0, 0q, Y1 Ñ X is a trivial covering by n copies of Xztp0, 0qu. Thus it suffices to check the
neighbourhood of p0, 0q (corresponding to t “ ˘1). Indeed, let Wi P Crts be arbitrary polynomials such that
Wip1q “ 1, Wip´1q “ ζin (i “ 0, . . . , n ´ 1). Let S be the multiplicative set generated by elements Wi. Then
S´1Rn is a free S´1A-module of rank n with basis given by:

bi :“ pWiptq, ζ
i
nWiptq, ζ

2i
n Wiptq, . . . , ζ

pn´1qi
n Wiptqq

(one easily checks that bi P Rn). Indeed, for any pP0, . . . , Pn´1q P Rn, let:

Qi :“
1

nWiptq

n´1
ÿ

j“0

ζ´ijn Pjptq.

Then Qi P A and

pP1, . . . , Pnq “
n´1
ÿ

i“0

Qiptq ¨ bi.

Note also that the fiber over p0, 0q is of degree n and contains n points. Thus it must be the spectrum of
śn
i“1 C.

This means that Y 1 Ñ X is étale.

Finally, Y 1 and Y are both étale over X, and thus Y 1 is étale over Y of degree 1, and thus Y 1 “ Y .

This proves that every cover of X is of the form SpecRn Ñ X with automorphism group Z{n (it suffices to see
what are the automorphisms of the fiber over p0, 0q – those are cyclic permutations p1, 2, . . . , nq, which take one
copy of rXi and map it to the next copy). This means that

π1pX,xq “ lim
Ð

Z{n – pZ.

Remark: usually one glues schemes along open subschemes, but affine schemes may be always glued along
closed subschemes, cf. Schwede, Gluing Schemes and a Scheme Without Closed Points.

5.D Problem:

(a) Show that
Cpptqq “

ď

ně1

Cpp n
?
tqq.
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(b) Deduce that π1pSpecpCpptqqq, xq “ GalpCpptqq{Cpptqqq – pZ.

(c) Show that π1pA1
Czt0u, xq – pZ.

Solution:

(a) Note that Cpptqq is a complete local field. Therefore every its unramified algebraic extensions are in bijection
with the algebraic extensions of the residue field (a standard fact, cf. ????). But since its residue field is
algebraically closed, every extension of Cpptqq must be totally ramified. Let K{Cpptqq be a finite extension
of degree n and let uK be the uniformizer in K. Then, since it is totally ramified, ordpunKq “ 1, i.e.

unK “ t ¨ pc` (higher powers) q,

where c P C˚. But by Hensel’s lemma, every element h P OK such that ordphq “ 0 has an nth root. In
particular, we can find an element u P OK such that un “ c` (higher powers) . Then puK{uqn “ t and this
easily leads to K “ Cppt1{nqq.

(b) This is immediate, since Cpptqq “
Ť

ně1 Cppt1{nqq, GalpCppt1{nqq{Cq “ Z{n and lim
Ð

Z{n “ pZ.

(c) Intuitively, this is clear – Cpptqq is ”an infinitesimal punctured disc”, and thus it should be ”homoto-
pic” to A1

Czt0u. However, I have no idea, how to make this precise. Instead, I have another solution (cf.
https://math.stackexchange.com/questions/42410/finite-etale-maps-to-the-line-minus-the-origin):

let p : Y Ñ X :“ A1
Czt0u be a connected finite étale cover. Then one can ”complete” it to a cover of smooth

affine curves: p : Y Ñ X “ P1
C. An easy application of Riemann-Hurwitz yields:

2gY `#p´1p0q `#p´1p8q “ 2,

and thus gY “ 0, #p´1p0q “ #p´1p8q “ 1. Therefore Y “ P1
C. But the maps P1

C Ñ P1
C are the rational

maps, and they may be ramified at 0 and 8 with ramification index 1 iff ppzq “ c ¨ zn. This map is étale
over X, as can easily be seen. This easily shows that AutpY {Xq – Z{n and

π1pX,xq – lim
Ð
AutpY {Xq – lim

Ð
Z{n – pZ.


