
THE DE RHAM COHOMOLOGY OF p-GROUP COVERS

DESCRIPTION FOR GENERAL PUBLIC (EXTENDED)

J�DRZEJ GARNEK

1. �Symmetries� of curves

It is often the case in many areas of science, that we want to study not
only an object, but also its symmetries, as they form an inherent part of
its structure. Often this allows us to understand the object better. This
philosophy comes up for example, when we consider a chemical molecule or
a physical system. In mathematics this is formalized by using such notions as
a group, group action and a representation of a group. The proposed
project concerns symmetries of algebraic curves, i.e. one dimensional objects
given by algebraic equations, e.g.

(�) y2 � x3 � x.

Note however, that we will deal with curves modulo a prime p. This means
that we want the equation to by satis�ed only up to a multiple of p. For
example, the point px, yq � p662, 578q belongs to the curve with the equa-
tion (�) modulo 1009, since 5782 � 6623 � 662� 287198 � 1009.

�Classical� curve y2 � x3 � x Curve y2 � x3 � x modulo 1009

In the left picture we see a classical curve, in the right � the curve with the
same equation but modulo 1009. Note that both curves have a symmetry
(and it is literally a symmetry with respect to a horizontal line).

Curves modulo p have a major importance in mathematics � for example
the famous Riemann hypothesis, which is unsolved in the classical case, is
known for curves modulo p. Also, curves modulo primes have numerous
applications in cryptography: both to encrypt messages, to construct error-
correcting codes and to provide digital signatures.
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2. Cohomologies

There are various invariants of curves that distinguish them. Let mention
only two of them:

 the de Rham cohomology: H1
dRpXq,

 the Hodge cohomology: H1
HdgpXq.

Both of them are certain vector spaces. For classical curves those two coho-
mologies are the same, for curves mod p they might not be. If the curve has
some symmetries, then these symmetries act also on the cohomologies. The
goal of this project is to understand those two invariants, accounting for the
action of the symmetries.

3. Branch points

In order to explain a conjecture concerning the cohomologies, I must �rst
de�ne the notion of a branch point. Considering a curve X with a set of
�symmetries� G is equivalent to considering a cover of curves f : X Ñ Y .
Here Y is the space of �orbits�, meaning that in order to obtain Y we identify
the points of X that are symmetrical. In the picture we see an exemplary
case, when there are four symmetries.

Note that over almost every point of Y there are four points of X. The
remaining points are branch points. Similarly one de�nes branch points in
general.

4. Conjecture

My previous results suggest that the de Rham cohomology decomposes as
a sum of certain global and local parts. The global part should depend only
on the �topology� of the cover (i.e. on the picture of the cover, as drawn
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above), while the local parts should depend only on a small neighbourhood
of the branch points of the cover. Moreover, the global part of the Hodge
cohomology and the de Rham cohomology should be the same. Thus, Hodge
and de Rham cohomology di�er only by local parts! I expect also that the
local parts can be described in terms of Harbater�Katz�Gabber covers, i.e.
covers of the line that are branched only over one point.

This conjecture has a nice geometric interpretation. Namely, it means
that the cohomology of the cover:

is the same as of the degenerated cover approximating it:


