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A determinant A review Problem

Let ℓ ∈ P, ℓ ∤ r . Consider the function:

n : (Z/ℓ)× →

1

2

Z, n(j) :=

⌊
j · r
ℓ

⌋

− r − 1

2

Question

Find the determinant of the matrix:

Mℓ,r :=

where C � arbitrary set of representatives of (Z/ℓ)×/⟨±1⟩.

For any i ∈ (Z/ℓ)×:
n(i) + n(ℓ− i) =
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Mℓ,r := [n(i · j−1)]i ,j∈C ,

n(j) :=

⌊
j · r
ℓ

⌋
− r − 1

2
.

Example: ℓ = 11, r = 3, C = {2, 4, 5, 8, 10} ⇒

= −11
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A determinant A review Problem

An abelian variety is a projective algebraic group.

Example: E � elliptic curve, i.e. a smooth curve given by the equation

y2 = x3 + Ax + B, A,B ∈ Q

along with a "point at in�nity" O.
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A determinant A review Problem

The set of real points on E , E (R), (or complex, or rational, ...) on this

curve has a structure of an abelian group:

• O � neutral element,

• the inverse point to R = (x , y) is −R := (x ,−y),

• P + Q + R = O i� P,Q,R are colinear.
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A determinant A review Problem

Algebraic formulas:

(x1, y1) + (x2, y2) := (x3, y3),

where:

x3 =

(
y2 − y1
x2 − x1

)2

− x1 − x2,

y3 =
y2 − y1
x2 − x1

x3 −
y1x2 − y2x1
x2 − x1
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A determinant A review Problem

Is it possible to add points on other a curves?

asmooth projective

Answer: No, ... but any curve C can be embedded in an abelian variety

Jac(C ) (the Jacobian of C ). The dimension of the Jacobian is the genus

of the curve.
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A determinant A review Problem

Example: Jacobian of the curve

Y 2 = f6X
6 + f5X

5 + f4X
4 + f3X

3 + f2X
2 + f1X + f0

is given by an intersection of n quadratic forms:
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Example: Jacobian of the curve

Y 2 = f6X
6 + f5X

5 + f4X
4 + f3X

3 + f2X
2 + f1X + f0

is given by an intersection of n quadratic forms:

where n = 72.
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Example: Jacobian of the curve

Y 2 = f6X
6 + f5X

5 + f4X
4 + f3X

3 + f2X
2 + f1X + f0

is given by an intersection of 72 quadratic forms.

How to work with Jacobians?

Jac(C ) ∼= Pic0(C ) =
divisors (formal sums of points) of degree 0

divisors of functions

J¦drzej Garnek The �exponential� torsion... 23.07.25 7 / 16



A determinant A review Problem

n-torsion on an abelian variety A:

A[n] = {P ∈ A(Q) : P + P + . . .+ P︸ ︷︷ ︸
n

= O}

∼= (Z/n)2g .

�Rationality� of torsion points is encoded by the Galois representation:

Why study the torsion?
• interesting extensions (inverse Galois problem, class numbers),
• interesting representations (Last Fermat's Theorem, modularity).

What is the image of the representation?

Conjecture (Mumford�Tate)

∼= MT (A)⊗Qℓ.

� a bridge between the Hodge and Tate conjectures for abelian varieties.
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A determinant A review Problem

The main question

What is the ℓ-torsion and the image of ρℓ∞ for Jac(C ), where

C : y ℓ = f (x) ?

Example: ℓ = 2, f = x3 + Ax + B

E [2] = {O, (x1, 0), (x2, 0), (x3, 0)},

where x1, x2, x3 � zeroes of x3 + Ax + B .
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A determinant A review Problem

The main question

What is the ℓ-torsion and the image of ρℓ∞ for Jac(C ), where

C : y ℓ = f (x) ?

A more general case: Let r := deg f , where 2ℓ ∤ r .
Then dim Jac(C ) = 1

2
(ℓ− 1)(r − 1).

If f (α) = 0, then in the group of the divisors:

ℓ · ((α, 0)−∞) = div(x − α),

so that

(α, 0)−∞ ∈ Jac(C )[ℓ].

If ℓ = 2, we obtain the whole ℓ-torsion. How about ℓ > 2?
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A determinant A review Problem

im ρℓ∞ ⊂ Gl2g (Zℓ)

(∗)

What constraints does im ρℓ∞ satisfy?

• we have an action of µℓ on C : y ℓ = f (x) given by:

(x , y) 7→ (x , ζℓ · y).

Thus on Jac(C ) we have an action of O := Z[ζℓ] and on ℓ∞-torsion

the action of Oℓ := Zℓ[ζℓ].

• the action of the Galois group preserves a unitary form (Weil pairing),

• on λ-torsion (where λ := 1− ζℓ) the Galois group is Gal(f ).

• condition on the determinants of ρℓ∞ .

Theorem (JG)

If Gal(f ) = Sr and there exists a prime ideal p in O such that

ordp(disc(f )) = 1, then (∗) is an equality!

J¦drzej Garnek The �exponential� torsion... 23.07.25 11 / 16



A determinant A review Problem

im ρℓ∞ ⊂ Gl2(r−1)(Oℓ)

(∗)

What constraints does im ρℓ∞ satisfy?

• we have an action of µℓ on C : y ℓ = f (x) given by:

(x , y) 7→ (x , ζℓ · y).

Thus on Jac(C ) we have an action of O := Z[ζℓ] and on ℓ∞-torsion

the action of Oℓ := Zℓ[ζℓ].

• the action of the Galois group preserves a unitary form (Weil pairing),

• on λ-torsion (where λ := 1− ζℓ) the Galois group is Gal(f ).

• condition on the determinants of ρℓ∞ .

Theorem (JG)

If Gal(f ) = Sr and there exists a prime ideal p in O such that

ordp(disc(f )) = 1, then (∗) is an equality!

J¦drzej Garnek The �exponential� torsion... 23.07.25 11 / 16



A determinant A review Problem

im ρℓ∞ ⊂ GU2(r−1)(Oℓ)

(∗)

What constraints does im ρℓ∞ satisfy?

• we have an action of µℓ on C : y ℓ = f (x) given by:

(x , y) 7→ (x , ζℓ · y).

Thus on Jac(C ) we have an action of O := Z[ζℓ] and on ℓ∞-torsion

the action of Oℓ := Zℓ[ζℓ].

• the action of the Galois group preserves a unitary form (Weil pairing),

• on λ-torsion (where λ := 1− ζℓ) the Galois group is Gal(f ).

• condition on the determinants of ρℓ∞ .

Theorem (JG)

If Gal(f ) = Sr and there exists a prime ideal p in O such that

ordp(disc(f )) = 1, then (∗) is an equality!

J¦drzej Garnek The �exponential� torsion... 23.07.25 11 / 16



A determinant A review Problem

im ρℓ∞ ⊂ GU2(r−1)(Oℓ)
Gal(f )

(∗)

What constraints does im ρℓ∞ satisfy?

• we have an action of µℓ on C : y ℓ = f (x) given by:

(x , y) 7→ (x , ζℓ · y).

Thus on Jac(C ) we have an action of O := Z[ζℓ] and on ℓ∞-torsion

the action of Oℓ := Zℓ[ζℓ].

• the action of the Galois group preserves a unitary form (Weil pairing),

• on λ-torsion (where λ := 1− ζℓ) the Galois group is Gal(f ).

• condition on the determinants of ρℓ∞ .

Theorem (JG)

If Gal(f ) = Sr and there exists a prime ideal p in O such that

ordp(disc(f )) = 1, then (∗) is an equality!

J¦drzej Garnek The �exponential� torsion... 23.07.25 11 / 16



A determinant A review Problem

im ρℓ∞ ⊂ GU2(r−1)(Oℓ)
Gal(f )
det∈DJ

(∗)

What constraints does im ρℓ∞ satisfy?

• we have an action of µℓ on C : y ℓ = f (x) given by:

(x , y) 7→ (x , ζℓ · y).

Thus on Jac(C ) we have an action of O := Z[ζℓ] and on ℓ∞-torsion

the action of Oℓ := Zℓ[ζℓ].

• the action of the Galois group preserves a unitary form (Weil pairing),

• on λ-torsion (where λ := 1− ζℓ) the Galois group is Gal(f ).

• condition on the determinants of ρℓ∞ .

Theorem (JG)

If Gal(f ) = Sr and there exists a prime ideal p in O such that

ordp(disc(f )) = 1, then (∗) is an equality!

J¦drzej Garnek The �exponential� torsion... 23.07.25 11 / 16



A determinant A review Problem

im ρℓ∞ ⊂ GU2(r−1)(Oℓ)
Gal(f )
det∈DJ

(∗)

What constraints does im ρℓ∞ satisfy?

• we have an action of µℓ on C : y ℓ = f (x) given by:

(x , y) 7→ (x , ζℓ · y).

Thus on Jac(C ) we have an action of O := Z[ζℓ] and on ℓ∞-torsion

the action of Oℓ := Zℓ[ζℓ].

• the action of the Galois group preserves a unitary form (Weil pairing),

• on λ-torsion (where λ := 1− ζℓ) the Galois group is Gal(f ).

• condition on the determinants of ρℓ∞ .

Theorem (JG)

If Gal(f ) = Sr and there exists a prime ideal p in O such that

ordp(disc(f )) = 1, then (∗) is an equality!

J¦drzej Garnek The �exponential� torsion... 23.07.25 11 / 16



A determinant A review Problem

Question

What can be said about the image of detO ◦ ρℓ∞ : Gal(Q/Q) → O×
ℓ ?

• the �natural candidate� for the image:

{d ∈ O×
ℓ : d · d ∈ 1+ ℓ · (r − 1)Zℓ}

• class �eld theory:
• Gal(Q/Q)ab ≈ IQ/Q×, where IQ :=

∏′
p≤∞ Q×

p ,
• detO ◦ ρℓ∞ comes from the Hecke character

χ : IQ/Q× → Q(ζℓ)
×,

• the �in�nity type� χ is determined by µℓ ⟲ H0(ΩC ),

and equal to:
ℓ−1∏
j=1

σ
⌊ r·j

ℓ
⌋

j

where σj(ζℓ) := ζ jℓ.
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A determinant A review Problem

Question

What can be said about the image of detO ◦ ρℓ∞ : Gal(Q/Q(ζℓ))
ab → O×

ℓ ?

• �linear algebra�:

detO ◦ ρℓ∞ has a �nite index in the "natural candidate" i� detMℓ,r ̸= 0.

• Hirabayashi formula for the determinant of Mℓ,r (Demjanenko, '98)

detMℓ,r =
(−1)

ℓ−1
2 · h−ℓ
2ℓ

· (r rℓ − 1)
ℓ−1
2rℓ ,

where:
• h−ℓ is the relative class number of Q(ζℓ),
• rℓ is the multiplicative order of r mod ℓ.

Corollary (JG)

Under the assumptions of the Theorem, the MT conjecture (and Hodge

and Tate's) holds for Jac(C )!
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A determinant A review Problem

About the proof

• a lifting result:

• �descent theory�: the description of Q(Jac(C )[λ2]), i.e.

Q(ζℓ, Jac(C )[λ2]) = Q(ζℓ, α1, . . . , αr , ℓ
√

αi − αj : i ̸= j),

where α1, . . . , αr � roots of f .
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Thank you for your
attention!
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Other remarks

• Hodge group (the special Mumford�Tate group):

U(H1(Jac(C ),Q),Ψ)

• from the proof of the MT conjecture in this case it follows that

End(Jac(C )) = Z[ζℓ],

• Hodge conjecture:

Theorem (Ribet)

If E := End(Jac(C ))⊗Q is a commutative �eld and

MT (Jac(C )) = U(H1(Jac(C ),Q),Ψ),

then Jac(C ) satis�es criterion (1,1) (i.e. all classes Hodge's are derived

from divisors). In particular, it satis�es the Hodge conjecture!
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