The "exponential" torsion of superelliptic Jacobians

Jędrzej Garnek

UAM Poznań

SYMPAAN Będlewo, 23.07.2025

A determinant ●○	A review 000000	Problem 00000000
Let $\ell \in \mathbb{P}$, $\ell mid r$. Consider the funct	ion:	

$$n: (\mathbb{Z}/\ell)^{ imes} o \mathbb{Z}, \qquad n(j):=\left\lfloor rac{j\cdot r}{\ell}
ight
floor$$

A determinant ●0	A review 000000	Problem 0000000
Let $\ell \in \mathbb{P}$, $\ell mid r$. Consider t	the function:	

. .

.

$$n: (\mathbb{Z}/\ell)^{\times} \to \mathbb{Z}, \qquad n(j):=\left\lfloor \frac{j\cdot r}{\ell} \right\rfloor$$

Question

Find the determinant of the matrix:

$$M_{\ell,r} := [n(i \cdot j^{-1})]_{i,j \in (\mathbb{Z}/\ell)^{\times}}$$

$$n: (\mathbb{Z}/\ell)^{\times} \to \mathbb{Z}, \qquad n(j):=\left\lfloor \frac{j\cdot r}{\ell} \right\rfloor$$

Question

Find the determinant of the matrix:

$$M_{\ell,r} := [n(i \cdot j^{-1})]_{i,j \in (\mathbb{Z}/\ell)^{\times}}$$

For any $i \in (\mathbb{Z}/\ell)^{\times}$:

$$n(i) + n(\ell - i) = r - 1$$

A determinant ●0	A review 000000	Problem 00000000

Let $\ell \in \mathbb{P}$, $\ell \nmid r$. Consider the function:

$$n: (\mathbb{Z}/\ell)^{\times} \to \frac{1}{2}\mathbb{Z}, \qquad n(j):= \left\lfloor \frac{j\cdot r}{\ell} \right\rfloor - \frac{r-1}{2}$$

Question

Find the determinant of the matrix:

$$M_{\ell,r} := [n(i \cdot j^{-1})]_{i,j \in (\mathbb{Z}/\ell)^{\times}}$$

For any $i \in (\mathbb{Z}/\ell)^{ imes}$:

$$n(i) + n(\ell - i) = r - 1$$

A determinant ●0	A review 000000	Problem 00000000

Let $\ell \in \mathbb{P}$, $\ell \nmid r$. Consider the function:

$$n: (\mathbb{Z}/\ell)^{\times} \to \frac{1}{2}\mathbb{Z}, \qquad n(j):=\left\lfloor \frac{j\cdot r}{\ell} \right\rfloor - \frac{r-1}{2}$$

Question

Find the determinant of the matrix:

$$M_{\ell,r} := [n(i \cdot j^{-1})]_{i,j \in (\mathbb{Z}/\ell)^{\times}}$$

For any $i \in (\mathbb{Z}/\ell)^{ imes}$:

$$n(i) + n(\ell - i) = 0$$
 (odd function)

A determinant ●○	A review 000000	Problem 00000000

Let $\ell \in \mathbb{P}$, $\ell \nmid r$. Consider the function:

$$n: (\mathbb{Z}/\ell)^{\times} \to \frac{1}{2}\mathbb{Z}, \qquad n(j):=\left\lfloor \frac{j\cdot r}{\ell} \right\rfloor - \frac{r-1}{2}$$

Question

Find the determinant of the matrix:

$$M_{\ell,r} := [n(i \cdot j^{-1})]_{i,j \in \mathbf{C}}$$

where C – arbitrary set of representatives of $(\mathbb{Z}/\ell)^{\times}/\langle \pm 1 \rangle$.

For any $i \in (\mathbb{Z}/\ell)^{ imes}$:

$$n(i) + n(\ell - i) = 0$$
 (odd function)

A determinant ⊙●	A review 000000	Problem 00000000
	$egin{aligned} &M_{\ell,r}:=[n(i\cdot j^{-1})]_{i,j\in C},\ &n(j):=\left\lfloorrac{j\cdot r}{\ell} ight floor-rac{r-1}{2}. \end{aligned}$	

A determinant ○●	A review 000000	Problem 00000000
	$egin{aligned} M_{\ell,r} &:= [n(i \cdot j^{-1})]_{i,j \in C}, \ n(j) &:= \left\lfloor rac{j \cdot r}{\ell} ight floor - rac{r-1}{2}. \end{aligned}$	

 $\det M_{\ell,r} =$

A determinant	A review	Problem
⊙●	000000	00000000

$$M_{\ell,r} := [n(i \cdot j^{-1})]_{i,j \in C},$$

$$n(j) := \left\lfloor \frac{j \cdot r}{\ell} \right\rfloor - \frac{r-1}{2}.$$

$$\det M_{\ell,r} = \begin{vmatrix} n(\frac{2}{2}) & n(\frac{2}{4}) & n(\frac{2}{5}) & n(\frac{2}{8}) & n(\frac{2}{10}) \\ n(\frac{4}{2}) & n(\frac{4}{4}) & n(\frac{4}{5}) & n(\frac{4}{8}) & n(\frac{4}{10}) \\ n(\frac{5}{2}) & n(\frac{5}{4}) & n(\frac{5}{5}) & n(\frac{5}{8}) & n(\frac{5}{10}) \\ n(\frac{8}{2}) & n(\frac{8}{4}) & n(\frac{8}{5}) & n(\frac{8}{8}) & n(\frac{8}{10}) \\ n(\frac{10}{2}) & n(\frac{10}{4}) & n(\frac{10}{5}) & n(\frac{10}{8}) & n(\frac{10}{10}) \end{vmatrix}$$

A determinant	A review	Problem
⊙●	000000	00000000

$$M_{\ell,r} := [n(i \cdot j^{-1})]_{i,j \in C},$$

$$n(j) := \left\lfloor \frac{j \cdot r}{\ell} \right\rfloor - \frac{r-1}{2}.$$

Example: $\ell = 11, r = 3, C = \{2, 4, 5, 8, 10\} \Rightarrow$ $|n(1) \ n(6) \ n(7) \ n(3) \ n(9)|$ n(2) n(1) n(3) n(6) n(7)det $M_{\ell,r} = |n(8) \ n(4) \ n(1) \ n(2) \ n(6)$ n(4) n(2) n(6) n(1) n(3)n(5) n(8) n(2) n(4) n(1)

23.07.25

A determinant	A review	Problem
⊙●	000000	00000000

$$M_{\ell,r} := [n(i \cdot j^{-1})]_{i,j \in C},$$

$$n(j) := \left\lfloor \frac{j \cdot r}{\ell} \right\rfloor - \frac{r-1}{2}.$$

$$\det M_{\ell,r} = \begin{vmatrix} -1 & 0 & 0 & -1 & 1 \\ -1 & -1 & -1 & 0 & 0 \\ 1 & 0 & -1 & -1 & 0 \\ 0 & -1 & 0 & -1 & -1 \\ 0 & 1 & -1 & 0 & -1 \end{vmatrix}$$

Jędrzej Gar<u>nek</u>

A determinant	A review	Problem
⊙●	000000	00000000

$$M_{\ell,r} := [n(i \cdot j^{-1})]_{i,j \in C},$$

$$n(j) := \left\lfloor \frac{j \cdot r}{\ell} \right\rfloor - \frac{r-1}{2}.$$

$$\det M_{\ell,r} = \begin{vmatrix} -1 & 0 & 0 & -1 & 1 \\ -1 & -1 & -1 & 0 & 0 \\ 1 & 0 & -1 & -1 & 0 \\ 0 & -1 & 0 & -1 & -1 \\ 0 & 1 & -1 & 0 & -1 \end{vmatrix} = -11$$

Jędrzej Gar<u>nek</u>

A determinant 00	A review ●00000		00000000
An abelian variet	y is a projective algebrai	c group.	
Example: E – elli	ptic curve, i.e. a smooth	n curve given by the equ	ation
	$y^2 = x^3 + Ax + B,$	$A,B\in\mathbb{Q}$	
along with a "poin	it at infinity" $\mathcal{O}.$		
	T	/	

A determinant 00	A review 0●0000	Problem 00000000
The set of real points on <i>E</i> , <i>E</i>	$\overline{E}(\mathbb{R})$, (or complex, o	r rational,) on this

curve has a structure of an abelian group:

A determinant 00	A review 0●0000	Problem 00000000
The set of real points on $E,\ E(\mathbb{R}),$	(or complex, or rational,) on t	his
curve has a structure of an abelian	group:	

• \mathcal{O} – neutral element,

A determinant 00	A review o●oooo	Problem 00000000
The set of real points on $E,\ E(\mathbb{R}),$	(or complex, or rational,) on t	his
curve has a structure of an abelian	group:	

- \mathcal{O} neutral element,
- the inverse point to R = (x, y) is -R := (x, -y),

A determinant 00	A review 0●0000	Problem 00000000
The set of real points on $E, E(\mathbb{R}),$	(or complex, or rational,) on t	his
curve has a structure of an abelian	group	

- *O* neutral element,
- the inverse point to R = (x, y) is -R := (x, -y),
- P + Q + R = O iff P, Q, R are colinear.

A determinant 00	A review 0●0000	Problem 00000000
The set of real points on $E, E(\mathbb{R}),$	(or complex, or rational,) on t	his
curve has a structure of an abelian	group	

- *O* neutral element,
- the inverse point to R = (x, y) is -R := (x, -y),
- P + Q + R = O iff P, Q, R are colinear.

A determinant	A review	Problem
00	00●000	00000000

Algebraic formulas:

$$(x_1, y_1) + (x_2, y_2) := (x_3, y_3),$$

A determinant	A review	Problem
00	oo●ooo	00000000

Algebraic formulas:

$$(x_1, y_1) + (x_2, y_2) := (x_3, y_3),$$

where:

$$x_3 = \left(\frac{y_2 - y_1}{x_2 - x_1}\right)^2 - x_1 - x_2,$$

$$y_3 = \frac{y_2 - y_1}{x_2 - x_1} x_3 - \frac{y_1 x_2 - y_2 x_1}{x_2 - x_1}$$

A determinant 00	A review 000●00	Problem 0000000
Is it possible to add point	s on other ^a curves?	
^a smooth projective		

A determinant 00	A review 000€00	Problem 00000000
Is it possible to add points on other asmooth projective	r ^a curves?	

Answer: No, ...

A determinant 00	A review 000●00	Pro 004	blem 000000
Is it possible to add points on o "smooth projective	ther ^a curves?		

Answer: No, ... but any curve C can be embedded in an abelian variety Jac(C) (the **Jacobian** of C). The dimension of the Jacobian is the genus of the curve.

A determinant 00	A review oooo●o	Problem 00000000
Example: Jacobian of the	CILINA	

$$Y^{2} = f_{6}X^{6} + f_{5}X^{5} + f_{4}X^{4} + f_{3}X^{3} + f_{2}X^{2} + f_{1}X + f_{0}$$

A determinant 00	A review 0000●0	Problem 00000000
Example: Jacobian of the curve		

$$Y^{2} = f_{6}X^{6} + f_{5}X^{5} + f_{4}X^{4} + f_{3}X^{3} + f_{2}X^{2} + f_{1}X + f_{0}$$

$$\begin{split} a_0a_3 &= a_1a_1 - a_5^2f_0 - a_3^2f_4 + 4a_4a_{13}f_0f_5 + a_5a_{10}f_1f_5 + 8a_4a_{10}f_1f_6 + a_3a_{10}(4f_2f_6 - f_3f_5) + 8a_4a_{11}f_0f_6 + 2a_{13}a_{15}f_0f_1f_5 + a_{10}a_{15}(4f_0f_2f_6 + 2f_0f_3f_5 + 3f_1^2f_6) + 4a_{11}a_{15}f_0f_1f_6 + 2a_{10}a_{13}(f_0f_5^2 + 3f_1f_3f_6) + 8a_{11}a_{13}f_0f_3f_6 + a_{10}^2(4f_1f_5f_6 + 4f_2f_4f_6 - f_2f_5^2 - f_3^2f_6) + a_{10}a_{11}(4f_0f_5f_6 + 4f_1f_4f_6 - f_1f_5^2) + a_{11}^2f_0(4f_4f_6 - f_5^2) \end{split}$$

$$\begin{split} a_0a_4 &= a_1a_2 + a_5a_{15}f_0f_3 + a_3a_{15}(9f_0f_5 + f_1f_4) + 2a_5a_{14}f_0f_4 + a_4a_{13}(20f_0f_6 + 3f_1f_5) + \\ a_5a_{10}(7f_1f_6 + f_2f_5) + 4a_4a_{10}f_2f_6 + a_3a_{10}f_3f_6 + 4a_7a_9f_0f_5 + 4a_6a_9f_0f_6 - 4a_8^2f_0f_5 - 4a_7a_8f_0f_6 + \\ 4a_6a_8f_1f_6 &- 2a_7^2f_1f_6 + 4a_{15}^2f_0^2f_5 + 2a_{14}a_{15}f_0(2f_0f_6 + f_1f_5) + a_{13}a_{15}(14f_0f_1f_6 + 6f_0f_2f_5 + \\ f_1^2f_5) + a_{13}a_{14}(8f_0f_2f_6 + 3f_0f_3f_5 - f_1^2f_6) + a_{10}a_{14}(8f_0f_4f_6 + f_0f_2^2 + 3f_1f_3f_6) + 2a_{13}^2(10f_0f_3f_6 + \\ 2f_0f_4f_5 + 2f_1f_2f_6 + f_1f_3f_5) + a_{10}a_{13}(18f_0f_5f_6 + 6f_1f_4f_6 + f_1f_5^2 + 2f_2f_3f_6) + 4a_{12}a_{13}f_0f_3f_6 + \\ 2a_{10}^2f_6(f_1f_6 + f_2f_5) + 2a_{10}a_{11}f_6(2f_0f_6 + f_1f_5) + 2a_{10}a_{12}f_0f_5f_6 \end{split}$$

A determinant 00	A review 0000●0	Problem 00000000
Example: Jacobian of the curve		

$$Y^{2} = f_{6}X^{6} + f_{5}X^{5} + f_{4}X^{4} + f_{3}X^{3} + f_{2}X^{2} + f_{1}X + f_{0}$$

$$\begin{split} a_0a_5 &= a_2a_2 - a_5^2f_2 - a_3^2f_6 + a_5a_{15}(4f_0f_4 - f_1f_3) + a_3a_{15}f_1f_5 + 4a_5a_{14}f_0f_5 + 8a_4a_{14}f_0f_6 - 2a_3a_{14}f_1f_6 + 4a_4a_{12}f_1f_6 - 4a_6a_9f_1f_6 + 4a_7a_8f_1f_6 + a_{15}^2(4f_0f_2f_4 - f_0f_3^2 - f_1^2f_4) + a_{14}a_{15}f_5(4f_0f_2 - f_1^2) + 2a_{13}a_{15}(4f_0f_2f_6 + f_0f_3f_5 - 3f_1^2f_6) + a_{10}a_{15}(4f_0f_4f_6 - f_0f_5^2 - 4f_1f_3f_6) + 4a_{11}a_{15}f_6(2f_0f_3 - f_1f_2) + a_{12}a_{15}f_6(4f_0f_2 - f_1^2) + 4a_{10}a_{14}f_6(f_0f_5 - f_1f_4) - 4a_{10}a_{13}f_1f_5f_6 - 4a_{10}a_{11}f_1f_6^2 \end{split}$$

$$\begin{split} a_0a_6 &= a_1a_3 - a_2a_{10}f_3 - a_3a_9f_1 + 4a_5a_8f_0 + 4a_4a_8f_1 + 2a_3a_8f_2 + 2a_3a_7f_3 + a_8a_{15}(4f_0f_2 + f_1^2) + 4a_7a_{15}f_0f_3 + 4a_6a_{15}f_0f_4 + 2a_8a_{13}(2f_0f_4 + f_1f_3) + 2a_7a_{13}(2f_0f_5 + f_1f_4) + 2a_6a_{13}(2f_0f_6 + f_1f_5) - 2a_9a_{10}f_0f_5 + 3a_8a_{10}f_1f_5 + 2a_6a_{11}f_1f_6 + 4a_7a_{12}f_0f_5 + 4a_6a_{12}f_0f_6 \end{split}$$

Jędrzej Garnek

A determinant 00	A review oooo●o	Problem 00000000
Example : Jacobian of the curve		

$$Y^{2} = f_{6}X^{6} + f_{5}X^{5} + f_{4}X^{4} + f_{3}X^{3} + f_{2}X^{2} + f_{1}X + f_{0}$$

$$\begin{split} a_0a_7 &= a_1a_4 + a_1a_{15}f_1 + a_5a_9f_0 - a_4a_6f_4 + a_7a_{14}(f_0f_5 - f_1f_4) - a_6a_{14}f_2f_4 + a_9a_{13}f_0f_4 + \\ 2a_8a_{13}(-f_0f_5 + f_1f_4) + 2a_7a_{13}f_2f_4 + a_6a_{13}f_1f_6 - a_9a_{10}f_1f_5 + a_8a_{10}(-f_2f_5 + f_3f_4) + \\ a_7a_{10}(-f_3f_5 + f_4^2) - a_6a_{10}f_3f_6 + a_{9}a_{12}f_0f_4 + a_8a_{12}(-f_0f_5 + f_1f_4) + a_7a_{12}f_2f_4 \end{split}$$

$$\begin{split} a_0a_8 &= a_1a_5 + a_3a_7f_5 + 2a_3a_6f_6 \\ a_0a_9 &= a_2a_5 + a_4a_9f_3 + 3a_3a_8f_5 + 2a_5a_7f_4 + 4a_3a_7f_6 - a_8a_{15}f_2f_3 + a_7a_{15}(2f_1f_5 - f_3^2) + a_6a_{15}(2f_1f_6 - f_3f_4) + 4a_9a_{14}f_0f_5 - a_6a_{14}f_3f_5 - 4a_9a_{13}(-f_0f_6 - f_1f_5) + a_8a_{13}(4f_2f_5 - f_3f_4) + 2a_7a_{13}(2f_2f_6 + f_3f_5) + a_6a_{13}f_3f_6 + 4a_9a_{10}f_2f_6 + 4a_8a_{10}f_3f_6 + 2a_7a_{10}(2f_4f_6 - f_5^2) - 2a_6a_{10}f_5f_6 + 4a_9a_{11}f_1f_6 + 4a_9a_{12}f_0f_6 - a_6a_{12}f_3f_6 \end{split}$$

 $a_0 a_{10} = a_3 a_3$

$$a_0a_{11} = 2a_3a_4 + a_3a_{15}f_1 + a_5a_{10}f_3 + a_3a_{10}f_5$$

A determinant 00	A review 0000●0	Problem 0000000
Example : Jacobian of the cu	ırve	
$Y^2 = f_6 X^6 + f_5 X^6$	$^{5} + f_{4}X^{4} + f_{3}X^{3} + f_{2}X^{2}$	$+ f_1 X + f_0$

$$\begin{split} a_0a_{12} &= 2a_2a_7 + 2a_3a_{15}f_2 + a_5a_{14}f_1 + 2a_3a_{10}f_6 + 2a_4a_{12}f_3 - 2a_6a_9f_3 + 2a_7a_8f_3 + 4a_7^2f_4 + \\ 4a_6a_7f_5 - a_{13}a_{15}f_1f_3 + a_{10}a_{15}(8f_0f_6 + f_1f_5 - 3f_3^2) + 2a_{11}a_{15}(f_0f_5 - f_2f_3) - 2a_{10}a_{13}f_3f_5 + \\ 2a_{11}a_{13}(3f_1f_6 - f_3f_4) + 12a_{12}a_{13}f_0f_6 + a_{10}^2f_5^2 + 2a_{10}a_{11}f_3f_6 + 4a_{11}^2f_2f_6 + 4a_{11}a_{12}f_1f_6 + \\ 4a_{12}^2f_0f_6 \end{split}$$

 $a_0 a_{13} = a_3 a_5$

$$a_0a_{14} = 2a_4a_5 + a_5a_{15}f_1 + a_3a_{15}f_3 + a_5a_{10}f_5$$

 $a_0 a_{15} = a_5 a_5$

$$a_2a_3 = a_0a_7 - 2a_5a_9f_0 - a_5a_8f_1$$

A determinant 00	A review 0000●0	Problem 00000000
Example : Jacobian of the curve		
$Y^2 = f_6 X^6 + f_5 X^5 + f_4 X^5 $	$X^4 + f_3 X^3 + f_2 X^2 + f_1 X + f_0$	

$$\begin{split} a_2a_4 &= a_0a_8 - a_2a_{10}f_5 + a_4a_9f_2 - a_3a_6f_6 + a_9a_{15}f_0f_3 + a_8a_{15}(f_1f_3 - f_2^2) + a_7a_{15}(f_1f_4 - f_2f_3) + a_6a_{15}f_1f_5 - a_9a_{13}f_0f_5 - 2a_8a_{13}f_2f_4 + 2a_7a_{13}(f_1f_6 - f_2f_5) - a_6a_{13}f_2f_6 + a_9a_{11}f_2f_4 + a_8a_{11}(-f_1f_6 + f_2f_5) - a_8a_{12}f_2f_4 + a_7a_{12}(f_1f_6 - f_2f_5) - a_6a_{12}f_2f_6 \end{split}$$

$$\begin{split} a_2a_9 &= a_0a_{15} + a_5a_{15}f_2 + a_4a_{15}f_3 + 2a_3a_{15}f_4 + 3a_4a_{13}f_5 + 3a_3a_{13}f_6 + a_3a_{12}f_6 + a_{15}^2f_1f_3 + \\ a_{14}a_{15}f_1f_4 &+ a_{13}a_{15}(3f_1f_5 + 2f_2f_4) + 3a_{10}a_{15}f_3f_5 + a_{12}a_{15}f_1f_5 + a_{13}a_{14}(f_1f_6 + 2f_2f_5) + \\ 2a_{11}a_{14}f_2f_6 &+ a_{12}a_{14}f_1f_6 + a_{10}a_{13}(2f_4f_6 + f_5^2) + 2a_{11}a_{13}f_3f_6 \end{split}$$

 $\begin{aligned} 2a_2a_8 &= a_0a_{14} - a_5a_{15}f_1 - a_5a_{13}f_3 + a_5a_{10}f_5 + 2a_3a_{11}f_6 - 2a_{15}^2f_0f_3 - 4a_{14}a_{15}f_0f_4 + \\ 2a_{13}a_{15}(-3f_0f_5 - f_1f_4) - 4a_{11}a_{15}f_0f_6 - 4a_{12}a_{15}f_0f_5 - 2a_{13}a_{14}f_1f_5 - 4a_{12}a_{14}f_0f_6 - 4a_{13}^2f_1f_6 - \\ 2a_{12}a_{13}f_1f_6 &= a_{12}a_{13}f_1f_6 \end{aligned}$

A determinant 00	A review oooo●o	Problem 00000000
Example : Jacobian of t	he curve	
$Y^2 = f_6 X^6 + $	$f_5X^5 + f_4X^4 + f_3X^3 + f_2X^2 +$	$f_1 X + f_0$

$$\begin{split} &2a_2a_6 = a_0a_{11} + 4a_5a_{14}f_0 + 3a_5a_{13}f_1 + a_5a_{10}f_3 - a_3a_{10}f_5 + 2a_5a_{11}f_2 + a_5a_{12}f_1 + a_{14}a_{15}(4f_0f_2 - f_1^2) + 6a_{13}a_{15}f_0f_3 + a_{11}a_{15}(4f_0f_4 + f_1f_3) + 2a_{12}a_{15}f_0f_3 + a_{10}a_{14}f_1f_5 + 2a_{13}^2(f_0f_5 + f_1f_4) + 2a_{12}a_{13}f_0f_5 \end{split}$$

$$\begin{split} a_1a_6 &= a_0a_{10} + 3a_5a_{13}f_0 + 3a_4a_{13}f_1 + 2a_5a_{10}f_2 + a_4a_{10}f_3 + a_3a_{10}f_4 + a_5a_{12}f_0 + a_{13}a_{15}(2f_0f_2 + f_1^2) \\ &+ 3a_{10}a_{15}f_1f_3 + 2a_{13}a_{14}f_0f_3 + 2a_{11}a_{14}f_0f_4 + a_{10}a_{13}(3f_1f_5 + 2f_2f_4) + a_{11}a_{13}(f_0f_5 + 2f_1f_4) \\ &+ a_{10}^2f_3f_5 + a_{10}a_{11}f_2f_5 + a_{10}a_{12}f_1f_5 + a_{11}a_{12}f_0f_5 \end{split}$$

$$\begin{aligned} 2a_1a_7 &= a_0a_{11} + a_3a_{15}f_1 + 2a_5a_{14}f_0 - a_3a_{13}f_3 - a_3a_{10}f_5 - 4a_{10}a_{14}f_0f_6 - 4a_{13}^2f_0f_5 + \\ 2a_{10}a_{13}(-3f_1f_6 - f_2f_5) - 2a_{11}a_{13}f_1f_5 - 2a_{12}a_{13}f_0f_5 - 2a_{10}^2f_3f_6 - 4a_{10}a_{11}f_2f_6 - 4a_{10}a_{12}f_1f_6 - \\ 4a_{11}a_{12}f_0f_6 \end{aligned}$$

A determinant 00	A review 0000●0	Problem 00000000
Example: Jacobian of the curve		

$$Y^{2} = f_{6}X^{6} + f_{5}X^{5} + f_{4}X^{4} + f_{3}X^{3} + f_{2}X^{2} + f_{1}X + f_{0}$$

$$\begin{split} &2a_1a_8=a_0a_{12}-2a_5a_{15}f_0-2a_5a_{10}f_4-a_3a_{11}f_5-2a_4a_{12}f_3-4a_8a_9f_1+2a_6a_9f_3-4a_8^2f_2-2a_7a_8f_3-a_{15}^2f_1^2-2a_{14}a_{15}f_0f_3+2a_{13}a_{15}f_1f_3+a_{10}a_{15}(-8f_0f_6-f_1f_5+3f_3^2)-4a_{14}^2f_0f_4+2a_{13}a_{14}(-3f_0f_5+f_2f_3)+2a_{10}a_{14}(-f_1f_6+f_3f_4)-4a_{12}a_{14}f_0f_5+a_{10}a_{13}f_3f_5-12a_{12}a_{13}f_0f_6-4a_{12}^2f_0f_6 \end{split}$$

$$\begin{split} &2a_1a_9 = a_0a_{14} - a_5a_{15}f_1 + a_3a_{15}f_3 + 2a_3a_{14}f_4 + 3a_3a_{13}f_5 + 4a_3a_{11}f_6 + a_3a_{12}f_5 + a_{11}a_{15}f_1f_5 + a_{10}a_{14}(4f_2f_6 + f_3f_5) + 2a_{13}^2(f_1f_6 + f_2f_5) + 6a_{10}a_{13}f_3f_6 + 2a_{12}a_{13}f_1f_6 + a_{10}a_{11}(4f_4f_6 - f_5^2) + 2a_{10}a_{12}f_3f_6 \end{split}$$

$$\begin{aligned} &a_4a_4 = a_0a_{13} + a_5a_{13}f_2 + a_5a_{10}f_4 + a_3a_{10}f_6 + a_9^2f_0 + a_{13}a_{15}f_1f_3 + a_{10}a_{15}f_2f_4 + a_{11}a_{15}f_1f_4 + a_{10}a_{14}(f_1f_6 + f_2f_5) + a_{11}a_{14}f_1f_5 + a_{10}a_{13}(2f_2f_6 + f_3f_5) + a_{10}^2f_4f_6 + a_{10}a_{11}f_3f_6 + a_{10}a_{12}f_2f_6 + a_{11}a_{12}f_1f_6 \\ &a_{11}a_{12}f_1f_6 \end{aligned}$$

A determinant 00	A review 0000●0	Problem 00000000
Example: Jacobian of the curve		

$$Y^{2} = f_{6}X^{6} + f_{5}X^{5} + f_{4}X^{4} + f_{3}X^{3} + f_{2}X^{2} + f_{1}X + f_{0}$$

$$\begin{split} a_{0}a_{12} &= 2a_{0}a_{13} + 4a_{5}a_{15}f_{0} + 2a_{5}a_{14}f_{1} + 4a_{5}a_{13}f_{2} + 4a_{5}a_{10}f_{4} + 4a_{4}a_{10}f_{5} + 4a_{3}a_{10}f_{6} + \\ 2a_{5}a_{11}f_{3} + a_{15}^{2}(4f_{0}f_{2} - f_{1}^{2}) + 4a_{14}a_{15}f_{0}f_{3} + 2a_{13}a_{15}(4f_{0}f_{4} + f_{1}f_{3}) + a_{10}a_{15}(4f_{2}f_{4} - f_{3}^{2}) + \\ 4a_{11}a_{15}f_{1}f_{4} + 4a_{12}a_{15}f_{0}f_{4} + 4a_{13}a_{14}f_{0}f_{5} + 4a_{10}a_{14}(f_{1}f_{6} + f_{2}f_{5}) + 4a_{12}a_{14}f_{0}f_{5} + 4a_{13}^{2}(f_{0}f_{6} + \\ 2f_{1}f_{5}) + 4a_{10}a_{13}(2f_{2}f_{6} + f_{3}f_{5}) + 4a_{12}a_{13}(2f_{0}f_{6} + f_{1}f_{5}) + a_{10}^{2}(4f_{4}f_{6} + f_{5}^{2}) + 4a_{10}a_{11}f_{3}f_{6} + \\ 4a_{10}a_{12}f_{2}f_{6} + 4a_{11}a_{12}f_{1}f_{6} + 4a_{12}^{2}f_{0}f_{6} \end{split}$$

$$\begin{aligned} a_2 a_{15} &= a_5 a_9 - a_8 a_{15} f_3 - 2 a_7 a_{15} f_4 - 2 a_6 a_{15} f_5 - 2 a_6 a_{14} f_6 - a_8 a_{13} f_5 \\ a_2 a_{14} &= 2 a_5 a_8 + a_9 a_{15} f_1 + 2 a_8 a_{15} f_2 + a_7 a_{15} f_3 - a_7 a_{13} f_5 - 2 a_6 a_{13} f_6 \end{aligned}$$

$$a_2a_{13} = a_5a_7 - 2a_9a_{15}f_0 - a_8a_{15}f_1$$

$$a_2a_{10} = a_3a_7 - 2a_9a_{13}f_0 - a_8a_{13}f_1$$

$$a_2a_{11} = 2a_3a_8 + a_9a_{13}f_1 + 2a_8a_{13}f_2 + a_7a_{13}f_3 - a_7a_{10}f_5 - 2a_6a_{10}f_6$$

A determ	inant A review 0000€0	Problem 00000000
Exam	ple: Jacobian of the curve	
	$Y^2 = f_6 X^6 + f_5 X^5 + f_4 X^4 + f_3 X^3 + f_2 X^2 + f_1 X + f_0$	
is give	en by an intersection of <i>n</i> quadratic forms:	
	$a_2a_{12} = 2a_5a_7 + 2a_7a_{15}f_2 + a_6a_{15}f_3 + a_9a_{14}f_1 + 2a_9a_{13}f_2 + 3a_8a_{13}f_3 + 4a_7a_{13}f_4 + 3a_6a_{13}f_5 + a_8a_{10}f_5 + 2a_6a_{11}f_6$	
	$a_1a_{10} = a_3a_6 - a_7a_{13}f_1 - 2a_9a_{10}f_1 - 2a_8a_{10}f_2 - a_7a_{10}f_3 - 2a_9a_{11}f_0$	
	$a_1a_{11} = 2a_3a_7 - 2a_9a_{13}f_0 - a_8a_{13}f_1 + a_8a_{10}f_3 + 2a_7a_{10}f_4 + a_6a_{10}f_5$	
	$a_1a_{13} = a_3a_8 - a_7a_{10}f_5 - 2a_6a_{10}f_6$	
	$a_1a_{15} = a_5a_8 - a_7a_{13}f_5 - 2a_6a_{13}f_6$	
	$a_1a_{14} = 2a_5a_7 - 2a_9a_{15}f_0 - a_8a_{15}f_1 + a_8a_{13}f_3 + 2a_7a_{13}f_4 + a_6a_{13}f_5$	
	$a_1a_{12} = 2a_3a_8 + a_7a_{15}f_1 + 2a_9a_{14}f_0 + 3a_9a_{13}f_1 + 4a_8a_{13}f_2 + 3a_7a_{13}f_3 + 2a_6a_{13}f_4 + a_9a_{10}f_3 + a_9a_{1$	
	$2a_8a_{10}f_4 + a_6a_{11}f_5$	

A determinant	A review 0000●0	Problem 00000000
Example	e: Jacobian of the curve	
	$Y^{2} = f_{6}X^{6} + f_{5}X^{5} + f_{4}X^{4} + f_{3}X^{3} + f_{2}X^{2} + f_{1}X + f_{0}$	
is given l	by an intersection of <i>n</i> quadratic forms:	
	$a_5a_8 = a_4a_9 - a_8a_{15}f_2 - a_7a_{15}f_3 - a_6a_{15}f_4 - a_6a_{14}f_5 - a_8a_{13}f_4 - a_6a_{13}f_6 - a_6a_{12}f_6$	
	$a_5a_7 = a_4a_8 + a_9a_{15}f_0 + a_8a_{15}f_1 - a_7a_{13}f_4 - a_6a_{13}f_5 - a_6a_{11}f_6$	
	$a_5a_6 = a_4a_7 + a_7a_{15}f_1 + a_9a_{14}f_0 + a_9a_{13}f_1 + a_8a_{13}f_2 + a_7a_{13}f_3 - a_6a_{10}f_6$	
	$a_3a_7 = a_4a_6 - a_9a_{13}f_0 - a_7a_{13}f_2 - a_9a_{10}f_2 - a_8a_{10}f_3 - a_7a_{10}f_4 - a_9a_{11}f_1 - a_9a_{12}f_0$	
	$a_3a_8 = a_4a_7 - a_9a_{14}f_0 - a_9a_{13}f_1 - a_8a_{13}f_2 + a_7a_{10}f_5 + a_6a_{10}f_6$	
	$a_3a_9 = a_4a_8 - a_9a_{15}f_0 + a_8a_{13}f_3 + a_7a_{13}f_4 + a_6a_{13}f_5 + a_8a_{10}f_5 + a_6a_{11}f_6$	
	$a_5a_{15} = a_9^2 - a_{15}^2 f_2 - a_{14}a_{15}f_3 - a_{10}a_{15}f_6 - a_{14}^2 f_4 - a_{13}a_{14}f_5 - a_{12}a_{14}f_5 - 2a_{12}a_{13}f_6 - a_{12}^2 f_6$	
	$a_5a_{14} = 2a_8a_9 + a_{15}^2f_1 - a_{13}a_{15}f_3 - 2a_{13}a_{14}f_4 - 2a_{10}a_{14}f_6 - 3a_{13}^2f_5 - 2a_{12}a_{13}f_5 - 2a_{11}a_{12}f_6$	
	$a_5a_{13} = a_8^2 - a_{15}^2f_0 - a_{13}^2f_4 - 2a_{10}a_{13}f_6 - a_{11}a_{13}f_5 - a_{10}a_{12}f_6$	

A determinant 00	A review oooo●o	Problem 00000000
Example:	Jacobian of the curve	
	$Y^{2} = f_{6}X^{6} + f_{5}X^{5} + f_{4}X^{4} + f_{3}X^{3} + f_{2}X^{2} + f_{1}X + f_{0}$	
is given by	an intersection of <i>n</i> quadratic forms:	
	$a_5a_{10} = a_7^2 - 2a_{13}a_{15}f_0 - a_{10}a_{15}f_2 - a_{11}a_{15}f_1 - a_{12}a_{15}f_0 - a_{10}^2f_6$	
	$a_5a_{11} = 2a_7a_8 - 2a_{14}a_{15}f_0 - a_{13}a_{15}f_1 + a_{10}a_{15}f_3 - a_{10}a_{13}f_5 - 2a_{10}a_{11}f_6$	
	$a_5a_{12} = 2a_7a_9 + a_{14}a_{15}f_1 + 2a_{13}a_{15}f_2 + a_{11}a_{15}f_3 - a_{10}a_{14}f_5 - 2a_{10}a_{13}f_6 - 2a_{10}a_{12}f_6$	
	$a_4a_{15} = a_8a_9 - a_{13}a_{15}f_3 - a_{11}a_{15}f_4 - a_{10}a_{14}f_6 - 2a_{13}^2f_5 - a_{12}a_{13}f_5 - a_{11}a_{12}f_6$	
	$a_4a_{14} = a_7a_9 + a_8^2 - a_{15}^2f_0 + a_{13}a_{15}f_2 - a_{10}a_{15}f_4 - 3a_{10}a_{13}f_6 - 2a_{11}a_{13}f_5 - 2a_{10}a_{12}f_6$	
	$a_4a_{13} = a_7a_8 - a_{14}a_{15}f_0 - a_{13}a_{15}f_1 - a_{10}a_{13}f_5 - a_{10}a_{11}f_6$	
	$a_3a_{10} = a_6^2 - a_{10}a_{15}f_0 - a_{11}a_{13}f_1 - 2a_{12}a_{13}f_0 - a_{10}^2f_4 - a_{10}a_{11}f_3 - a_{11}^2f_2 - a_{11}a_{12}f_1 - a_{12}^2f_0$	

 $a_{3}a_{11} = 2a_{6}a_{7} - 2a_{11}a_{15}f_{0} - 2a_{12}a_{14}f_{0} - 3a_{13}^{2}f_{1} - a_{10}a_{13}f_{3} - 2a_{11}a_{13}f_{2} - 2a_{12}a_{13}f_{1} + a_{10}^{2}f_{5}$

 $a_3a_{13} = a_7^2 - 2a_{13}a_{15}f_0 - a_{12}a_{15}f_0 - a_{13}a_{14}f_1 - a_{13}^2f_2 - a_{10}^2f_6$

 $a_3a_{15} = a_8^2 - a_{15}^2f_0 - a_{10}a_{15}f_4 - a_{10}a_{14}f_5 - 2a_{10}a_{13}f_6 - a_{10}a_{12}f_6$

 $a_3a_{14} = 2a_7a_8 - 2a_{14}a_{15}f_0 - a_{13}a_{15}f_1 + a_{10}a_{15}f_3 - a_{10}a_{13}f_5 - 2a_{10}a_{11}f_6 - a_{10}a_{11}f_6 - a_{1$

 $a_{3}a_{12} = 2a_{6}a_{8} - 2a_{13}a_{15}f_{0} - a_{11}a_{15}f_{1} - 2a_{12}a_{15}f_{0} + a_{10}a_{14}f_{3} + 2a_{10}a_{13}f_{4} + a_{10}a_{11}f_{5}$
A determinant 00	A review 0000●0	Problem 00000000
Example:	Jacobian of the curve	
	$Y^{2} = f_{6}X^{6} + f_{5}X^{5} + f_{4}X^{4} + f_{3}X^{3} + f_{2}X^{2} + f_{1}X + f_{0}$	

is given by an intersection of n quadratic forms:

 $a_4a_{10} = a_6a_7 - a_{11}a_{15}f_0 - a_{10}a_{14}f_2 - a_{12}a_{14}f_0 - 2a_{13}^2f_1 - a_{10}a_{13}f_3 - a_{12}a_{13}f_1$ $a_4a_{11} = a_6a_8 + a_7^2 - 3a_{13}a_{15}f_0 - a_{10}a_{15}f_2 - 2a_{12}a_{15}f_0 - 2a_{13}a_{14}f_1 + a_{10}a_{13}f_4 - a_{10}^2f_6$ $a_4a_{12} = a_6a_9 + a_7a_8 - a_{14}a_{15}f_0 + 2a_{10}a_{15}f_3 + a_{11}a_{15}f_2 + a_{11}a_{13}f_4 - a_{10}a_{11}f_6$ $a_6a_{14} = 2a_7a_{13} - a_8a_{11} + a_7a_{12}$ $a_9a_{11} = -a_7a_{14} + 2a_8a_{13} + a_8a_{12}$ $a_9a_{13} = -a_7a_{15} + a_8a_{14}$ $a_8a_{13} = -a_6a_{15} + a_7a_{14}$ $a_7a_{13} = -a_9a_{10} + a_8a_{11}$ $a_6a_{13} = -a_8a_{10} + a_7a_{11}$ $a_{14}a_{14} = 2a_{13}a_{15} + a_{12}a_{15}$ $a_{13}a_{13} = a_{10}a_{15}$ $a_{11}a_{11} = 2a_{10}a_{13} + a_{10}a_{12}$ $a_{12}a_{13} = -2a_{10}a_{15} + a_{11}a_{14}$ $a_{11}a_{15} = a_{13}a_{14}$ $a_{10}a_{14} = a_{11}a_{13}$.

A determinant 00	A review 0000●0	Problem 00000000
Example: Jacobia	n of the curve	
$Y^2 = f_0$	$f_5X^6 + f_5X^5 + f_4X^4 + f_3X^3 + f_2X^2 + f_1X + f_3X^3$	f ₀
is given by an inter	rsection of <i>n</i> quadratic forms:	
	$a_4a_{10} = a_6a_7 - a_{11}a_{15}f_0 - a_{10}a_{14}f_2 - a_{12}a_{14}f_0 - 2a_{13}^2f_1 - a_{10}a_{13}f_3 - a_{12}a_{13}f_1$	
	$a_4a_{11} = a_6a_8 + a_7^2 - 3a_{13}a_{15}f_0 - a_{10}a_{15}f_2 - 2a_{12}a_{15}f_0 - 2a_{13}a_{14}f_1 + a_{10}a_{13}f_4 - a_{10}^2f_6$	
	$a_4a_{12} = a_6a_9 + a_7a_8 - a_{14}a_{15}f_0 + 2a_{10}a_{15}f_3 + a_{11}a_{15}f_2 + a_{11}a_{13}f_4 - a_{10}a_{11}f_6$	
	$a_6a_{14} = 2a_7a_{13} - a_8a_{11} + a_7a_{12}$	

 $a_{6}a_{14} = 2a_{7}a_{13} - a_{8}a_{11} + a_{7}a_{12}$ $a_{6}a_{11} = -a_{7}a_{14} + 2a_{5}a_{11} + a_{6}a_{12}$ $a_{6}a_{13} = -a_{7}a_{13} + a_{6}a_{14}$ $a_{6}a_{13} = -a_{6}a_{13} + a_{7}a_{14}$ $a_{7}a_{13} = -a_{6}a_{13} + a_{7}a_{14}$ $a_{6}a_{13} = -a_{6}a_{13} + a_{7}a_{14}$ $a_{6}a_{13} = -a_{6}a_{16} + a_{7}a_{11}$ $a_{14}a_{14} = 2a_{13}a_{15} + a_{12}a_{15}$ $a_{13}a_{13} = -a_{2}a_{16}a_{15} + a_{11}a_{15}$ $a_{13}a_{13} = -a_{2}a_{16}a_{15} + a_{11}a_{14}$ $a_{13}a_{15} = -a_{2}a_{16}a_{15} + a_{11}a_{14}$

where n = 72.

Jędrzej Garnek

A determinant 00	A review oooo●o	Problem 00000000
Example: Jacobian of the curve		

$$Y^{2} = f_{6}X^{6} + f_{5}X^{5} + f_{4}X^{4} + f_{3}X^{3} + f_{2}X^{2} + f_{1}X + f_{0}$$

is given by an intersection of 72 quadratic forms.

How to work with Jacobians?

 $\operatorname{Jac}(C) \cong \operatorname{Pic}^{0}(C) = \frac{\operatorname{divisors} (\operatorname{formal sums of points}) \operatorname{of degree} 0}{\operatorname{divisors of functions}}$

A determinant 00	A review ooooo●	Problem 0000000
<i>n</i> -torsion on an abelian variety	<i>A</i> :	
$A[n] = \{P \in A(\overline{\mathbb{Q}}) :$	$\underbrace{P+P+\ldots+P}_{n} = \mathcal{O}$	}

A determinant 00	A review 00000●	Problem 00000000
<i>n</i> -torsion on an abelian variety A	4:	
$A[n] = \{P \in A(\overline{\mathbb{Q}}) :$	$\underbrace{P+P+\ldots+P}_{n}=\mathcal{O}\}\cong (\mathbb{Z}/n)^{2g}.$	

A determinant 00	A review 00000●	Problem 0000000
<i>n</i> -torsion on an abelian variety	/ A :	
$A[n] = \{P \in A(\overline{\mathbb{Q}}) :$	$\underbrace{P+P+\ldots+P}_{n} =$	$\{\mathcal{O}\}\cong (\mathbb{Z}/n)^{2g}.$
	11	

A determinant 00	A review 00000●	OCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOC
<i>n</i> -torsion on an abelian variety <i>A</i> :		
$A[n] = \{P \in A(\overline{\mathbb{Q}}) : P\}$	$+ \underline{P} + \dots + \underline{P} = \mathcal{O}\} \cong (\mathbb{Z}/n)^{2g}.$	
$A[n] = \{P \in A(\overline{\mathbb{Q}}) : P \inA(\overline{\mathbb{Q})} : P (\overline{\mathbb{Q})} : P (\overline{\mathbb{Q})$	$\underbrace{+P+\ldots+P}_{n} = \mathcal{O}\} \cong (\mathbb{Z}/n)^{2g}$	•

 $\rho_n : \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to \operatorname{Aut}(A[n]) \cong \operatorname{Gl}_{2g}(\mathbb{Z}/n).$

A determinant 00	A review 00000●	OCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOC
<i>n</i> -torsion on an abelian variety <i>A</i> :		
$A[n] = \{P \in A(\overline{\mathbb{Q}}) : P\}$	$+ \underline{P} + \dots + \underline{P} = \mathcal{O}\} \cong (\mathbb{Z}/n)^{2g}.$	
$A[n] = \{P \in A(\overline{\mathbb{Q}}) : P \in A(\overline{\mathbb{Q})} : P \in A(\overline{\mathbb{Q})$	$\underbrace{+P+\ldots+P}_{n} = \mathcal{O}\} \cong (\mathbb{Z}/n)^{2g}$	•

 $\rho_{\ell^{\infty}} : \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to \operatorname{Aut}(T_{\ell}A) \cong \operatorname{Gl}_{2g}(\mathbb{Z}_{\ell}).$

OO	A review 00000●	00000000
<i>n</i> -torsion on an abelian variety	<i>A</i> :	
$A[n] = \{P \in A(\overline{\mathbb{Q}}) :$	$\underbrace{P+P+\ldots+P}_{q}=\mathcal{O}\}\cong (\mathbb{Z}/n)^{2g}$	
	n	

$$\rho_{\ell^{\infty}} : \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to \operatorname{Aut}(T_{\ell}A) \cong \operatorname{Gl}_{2g}(\mathbb{Z}_{\ell}).$$

Why study the torsion?

A review	Problem 0000000	
ty A:		
$\underbrace{P+P+\ldots+P}_{n}$	$=\mathcal{O}\}\cong (\mathbb{Z}/n)^{2g}.$	
1	ty A: $\frac{P+P+\ldots+P}{n} = \frac{P+P+\ldots+P}{n} = \frac{P+P+\dots+P}{n} = \frac{P+P+P+\ldots+P}{n} = \frac{P+P+P+\ldots+P}{n} = \frac{P+P+P+\dots+P}{n} = \frac{P+P+P+\dots+P}{n} = \frac{P+P+P+\dots+P}{n} = P+P+P+P+P+P+P+P+P+P+P+P+P+P+P+P+P+P+P+$	A review problem $occooccoocc}$ ty A: $\underbrace{P+P+\ldots+P}_{n} = \mathcal{O}\} \cong (\mathbb{Z}/n)^{2g}.$

$$\rho_{\ell^{\infty}} : \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to \operatorname{Aut}(T_{\ell}A) \cong \operatorname{Gl}_{2g}(\mathbb{Z}_{\ell}).$$

Why study the torsion?

• interesting extensions (inverse Galois problem, class numbers),

A determinant 00	A review 00000●	Problem 00000000
<i>n</i> -torsion on an abelian variety <i>p</i>	A:	
$A[n] = \{P \in A(\overline{\mathbb{Q}}) :$	$\underbrace{P+P+\ldots+P}_{n}=\mathcal{O}\}\cong (\mathbb{Z}/n)^{2g}.$	

$$\rho_{\ell^{\infty}} : \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to \operatorname{Aut}(T_{\ell}A) \cong \operatorname{Gl}_{2g}(\mathbb{Z}_{\ell}).$$

Why study the torsion?

- interesting extensions (inverse Galois problem, class numbers),
- interesting representations (Last Fermat's Theorem, modularity).

A determinant 00	A review 00000●	Problem 00000000
<i>n</i> -torsion on an abelian variety A	ł:	
$A[n] = \{P \in A(\overline{\mathbb{Q}}) :$	$\underbrace{P+P+\ldots+P}_{\mathcal{D}}=\mathcal{O}\}\cong (\mathbb{Z}/n)^{2g}.$	
	n	

$$\rho_{\ell^{\infty}} : \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to \operatorname{Aut}(T_{\ell}A) \cong \operatorname{Gl}_{2g}(\mathbb{Z}_{\ell}).$$

Why study the torsion?

- interesting extensions (inverse Galois problem, class numbers),
- interesting representations (Last Fermat's Theorem, modularity). What is the image of the representation?

A determinant 00	A review 00000●	Problem 000000000
<i>n</i> -torsion on an abelian variety A	4:	
$A[n] = \{P \in A(\overline{\mathbb{Q}}) :$	$\underbrace{P+P+\ldots+P}_{n}=\mathcal{O}\}\cong (\mathbb{Z}/n)^{2g}.$	

$$\rho_{\ell^{\infty}} : \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to \operatorname{Aut}(T_{\ell}A) \cong \operatorname{Gl}_{2g}(\mathbb{Z}_{\ell}).$$

Why study the torsion?

- interesting extensions (inverse Galois problem, class numbers),
- interesting representations (Last Fermat's Theorem, modularity). What is the image of the representation?

A determinant 00	A review ooooo●	Problem 00000000
<i>n</i> -torsion on an abelian varie	ty A:	
$A[n] = \{P \in A(\overline{\mathbb{Q}}) :$	$\underbrace{P+P+\ldots+P}_{n} =$	$\mathcal{O}\}\cong (\mathbb{Z}/n)^{2g}.$
	11	

$$\rho_{\ell^{\infty}} : \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to \operatorname{Aut}(T_{\ell}A) \cong \operatorname{Gl}_{2g}(\mathbb{Z}_{\ell}).$$

Why study the torsion?

- interesting extensions (inverse Galois problem, class numbers),
- interesting representations (Last Fermat's Theorem, modularity). What is the image of the representation?

Conjecture (Mumford–Tate)
$$im \rho_{\ell^{\infty}} =?$$

A determinant 00	A review oooooo	Problem 00000000
<i>n</i> -torsion on an abelian variety .	A:	
$A[n] = \{P \in A(\overline{\mathbb{Q}}) :$	$\underbrace{P+P+\ldots+P}_{\mathcal{D}}=\mathcal{O}\}\cong (\mathbb{Z}/n)^{2g}$	
	n	

$$\rho_{\ell^{\infty}} : \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to \operatorname{Aut}(T_{\ell}A) \cong \operatorname{Gl}_{2g}(\mathbb{Z}_{\ell}).$$

Why study the torsion?

- interesting extensions (inverse Galois problem, class numbers),
- interesting representations (Last Fermat's Theorem, modularity).

What is the image of the representation?

$$(im \,
ho_{\ell^{\infty}})^{Zar}$$

A determinant 00	A review oooooo	Problem 00000000
<i>n</i> -torsion on an abelian variety .	A:	
$A[n] = \{P \in A(\overline{\mathbb{Q}}) :$	$\underbrace{P+P+\ldots+P}_{\mathcal{D}}=\mathcal{O}\}\cong (\mathbb{Z}/n)^{2g}$	
	n	

$$\rho_{\ell^{\infty}} : \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to \operatorname{Aut}(T_{\ell}A) \cong \operatorname{Gl}_{2g}(\mathbb{Z}_{\ell}).$$

Why study the torsion?

- interesting extensions (inverse Galois problem, class numbers),
- interesting representations (Last Fermat's Theorem, modularity).

What is the image of the representation?

$$(im \, \rho_{\ell^{\infty}})^{Zar,o}$$

A determinant 00	A review ooooo●	Problem 00000000
<i>n</i> -torsion on an abelian varie	ty A:	
$A[n] = \{P \in A(\overline{\mathbb{Q}}) :$	$\underbrace{P+P+\ldots+P}_{n} =$	$\mathcal{O}\}\cong (\mathbb{Z}/n)^{2g}.$
	11	

$$\rho_{\ell^{\infty}} : \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to \operatorname{Aut}(T_{\ell}A) \cong \operatorname{Gl}_{2g}(\mathbb{Z}_{\ell}).$$

Why study the torsion?

- interesting extensions (inverse Galois problem, class numbers),
- interesting representations (Last Fermat's Theorem, modularity). What is the image of the representation?

$$(im \, \rho_{\ell^{\infty}})^{Zar,o} \cong MT(A) \otimes \mathbb{Q}_{\ell}.$$

A determinant 00	A review 00000	Problem 00000000
<i>n</i> -torsion on an abelian variety .	A:	
$A[n] = \{P \in A(\overline{\mathbb{Q}}) :$	$\underbrace{P+P+\ldots+P}_{n} = \mathcal{O}\} \cong$	$(\mathbb{Z}/n)^{2g}.$

$$\rho_{\ell^{\infty}} : \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to \operatorname{Aut}(T_{\ell}A) \cong \operatorname{Gl}_{2g}(\mathbb{Z}_{\ell}).$$

Why study the torsion?

- interesting extensions (inverse Galois problem, class numbers),
- interesting representations (Last Fermat's Theorem, modularity). What is the image of the representation?

Conjecture (Mumford–Tate)

$$(im \rho_{\ell^{\infty}})^{Zar,o} \cong MT(A) \otimes \mathbb{Q}_{\ell}.$$

- a bridge between the Hodge and Tate conjectures for abelian varieties.

A determinant 00	A review 000000	Problem ●0000000
The main question		
What is the $\ell\text{-torsion}$ a	nd the image of $ ho_{\ell^\infty}$ for ${\sf Jac}({\it C})$, where	e
	$C: y^\ell = f(x)$?	

A determinant 00	A review 000000	Problem ●0000000
The main question		
What is the $\ell\text{-torsion}$ and the im	age of $ ho_{\ell^\infty}$ for Jac(C), where	
<i>C</i> :	$y^{\ell} = f(x)$?	
Example: $\ell = 2, f = x^3 + Ax + Ax^3 + Ax$	- B	

A determinant 00	A review 000000	Problem ●0000000
The main question		
What is the ℓ -torsion and the ima	ge of $ ho_{\ell^\infty}$ for ${\sf Jac}({\sf C})$, where	
С:у	$f^{\ell} = f(x)$?	
Example: $\ell = 2$, $f = x^3 + Ax + Ax^3 + $	В	
-8 -6 -4 -2		
	.2.5	

A determinant 00	A review 000000	Problem ●0000000
The main que	stion	
What is the ℓ -t	corsion and the image of $ ho_{\ell^\infty}$ for $Jac(\mathcal{C})$, where	
	$C: y^\ell = f(x)$?	
Example: $\ell =$	$2, f = x^3 + Ax + B$	

A determinant 00	A review 000000	Problem ●0000000
The main question		
What is the ℓ -torsion ar	nd the image of $ ho_{\ell^\infty}$ for Jac(C), where
	$C: y^\ell = f(x)$?	
Example: $\ell = 2$, $f = x$	$A^3 + Ax + B$	
-8 -6	-4 -2 0 2 4 6	8
E[2	$P = \{\mathcal{O}, (x_1, 0), (x_2, 0), (x_3, 0)\}$	},
where x_1, x_2, x_3 – zeroes	s of $x^3 + Ax + B$.	
Jędrzej Garnek	The "exponential" torsion	23.07.25 9 / 16

A determinant 00	A review 000000	Problem o●oooooo
The main question		
What is the ℓ -torsion a	and the image of $ ho_{\ell^\infty}$ for Jac(C), where	
	$C: y^{\ell} = f(x) ?$	

A determinant 00	A review 000000	Problem o●oooooo
The main question		
What is the ℓ -torsion and the	ne image of $ ho_{\ell^\infty}$ for $Jac(\mathcal{C})$, where	
	$C: y^{\ell} = f(x)$?	
A more general case: Let $r := \deg f$, where $2\ell \nmid r$.		
Then $\dim \operatorname{Jac}(C) = \frac{1}{2}(\ell - 1)$	(r - 1)	

A determinant 00	A review 000000	Problem 0●000000
The main question		
What is the ℓ -torsion and the image of $ ho_{\ell^\infty}$ for $Jac(\mathcal{C})$, where		
$C:y^\ell$	=f(x) ?	
A more general case: Let $r := \deg f$, where $2\ell \nmid r$. Then dim Jac $(C) = \frac{1}{2}(\ell - 1)(r - 1)$.		

If $f(\alpha) = 0$, then in the group of the divisors:

$$\ell \cdot ((\alpha, 0) - \infty) = \operatorname{div}(x - \alpha),$$

A determinant 00	A review 000000	Problem 0●000000
The main question		
What is the ℓ -torsion and the image of $ ho_{\ell^\infty}$ for Jac(C), where		
$C:y^\ell$	=f(x) ?	
A more general case: Let $r := \deg f$, where $2\ell \nmid r$. Then dim Jac $(C) = \frac{1}{2}(\ell - 1)(r - 1)$.		

If $f(\alpha) = 0$, then in the group of the divisors:

$$\ell \cdot ((\alpha, 0) - \infty) = \operatorname{div}(x - \alpha),$$

so that

$$(\alpha, 0) - \infty \in \operatorname{Jac}(C)[\ell].$$

If $\ell = 2$, we obtain the whole ℓ -torsion. How about $\ell > 2$?

Jędrzej Garnek

A determinant 00	A review 000000	Problem 00●00000

$$\operatorname{\mathsf{im}}
ho_{\ell^\infty}\subset\operatorname{\mathsf{Gl}}_{2g}(\mathbb{Z}_\ell)$$

What constraints does im ho_{ℓ^∞} satisfy?

00	000000	0000000
im,	$\mathfrak{O}_{\ell^\infty}\subsetGl_{2(r-1)}(\mathcal{O}_\ell)$	
What constraints does im	$ ho_{\ell^\infty}$ satisfy?	
	0	

• we have an action of μ_ℓ on ${\cal C}:y^\ell=f(x)$ given by:

$$(x,y)\mapsto (x,\zeta_\ell\cdot y).$$

Thus on Jac(C) we have an action of $\mathcal{O} := \mathbb{Z}[\zeta_{\ell}]$ and on ℓ^{∞} -torsion the action of $\mathcal{O}_{\ell} := \mathbb{Z}_{\ell}[\zeta_{\ell}]$.

00 000000	0000000
$im\rho_{\ell^\infty}\subset \mathrm{GU}_{2(r-1)}(\mathcal{O}_\ell)$	
What constraints does im $ ho_{\ell^\infty}$ satisfy?	
• we have an action of μ_ℓ on $C: y^\ell = f(x)$ given by:	

$$(x,y)\mapsto (x,\zeta_\ell\cdot y).$$

Thus on Jac(C) we have an action of $\mathcal{O} := \mathbb{Z}[\zeta_{\ell}]$ and on ℓ^{∞} -torsion the action of $\mathcal{O}_{\ell} := \mathbb{Z}_{\ell}[\zeta_{\ell}]$.

• the action of the Galois group preserves a unitary form (Weil pairing),

OO OO	A review 000000	0000000
	$im ho_{\ell^\infty}\subset\mathrm{GU}_{2(r-1)}(\mathcal{O}_\ell)^{Gal(f)}$	

What constraints does im $\rho_{\ell^{\infty}}$ satisfy?

• we have an action of μ_ℓ on $C: y^\ell = f(x)$ given by:

$$(x,y)\mapsto (x,\zeta_\ell\cdot y).$$

Thus on Jac(C) we have an action of $\mathcal{O} := \mathbb{Z}[\zeta_{\ell}]$ and on ℓ^{∞} -torsion the action of $\mathcal{O}_{\ell} := \mathbb{Z}_{\ell}[\zeta_{\ell}]$.

- the action of the Galois group preserves a unitary form (Weil pairing),
- on λ -torsion (where $\lambda := 1 \zeta_{\ell}$) the Galois group is Gal(f).

A determinant 00	A review 000000	Problem 0000000
	$im ho_{\ell^\infty}\subset \mathrm{GU}_{2(r-1)}(\mathcal{O}_\ell)^{Gal(f)}_{det\in\mathcal{D}_J}$	

What constraints does im $\rho_{\ell^{\infty}}$ satisfy?

• we have an action of μ_ℓ on $C: y^\ell = f(x)$ given by:

$$(x,y)\mapsto (x,\zeta_\ell\cdot y).$$

Thus on Jac(C) we have an action of $\mathcal{O} := \mathbb{Z}[\zeta_{\ell}]$ and on ℓ^{∞} -torsion the action of $\mathcal{O}_{\ell} := \mathbb{Z}_{\ell}[\zeta_{\ell}]$.

- the action of the Galois group preserves a unitary form (Weil pairing),
- on λ -torsion (where $\lambda := 1 \zeta_{\ell}$) the Galois group is Gal(f).
- condition on the determinants of $ho_{\ell^\infty}.$

00 000000	0000000
$= \operatorname{GL}(\mathcal{O})\operatorname{Gal}(f)$	
$\operatorname{Im} \rho_{\ell^{\infty}} \subset \operatorname{GU}_{2(r-1)}(\mathcal{O}_{\ell})_{\det \in \mathcal{D}_{J}} \qquad (*)$	
What constraints does im $ ho_{\ell^\infty}$ satisfy?	
• we have an action of μ_{ℓ} on $C : y^{\ell} = f(x)$ given by:	

$$(x,y)\mapsto (x,\zeta_\ell\cdot y).$$

Thus on Jac(C) we have an action of $\mathcal{O} := \mathbb{Z}[\zeta_{\ell}]$ and on ℓ^{∞} -torsion the action of $\mathcal{O}_{\ell} := \mathbb{Z}_{\ell}[\zeta_{\ell}]$.

- the action of the Galois group preserves a unitary form (Weil pairing),
- on λ -torsion (where $\lambda := 1 \zeta_{\ell}$) the Galois group is Gal(f).
- condition on the determinants of $ho_{\ell^\infty}.$

Theorem (JG)

If $Gal(f) = S_r$ and there exists a prime ideal \mathfrak{p} in \mathcal{O} such that $ord_{\mathfrak{p}}(disc(f)) = 1$, then (*) is an equality!

A determinant 00	A review 000000	Problem 000●0000
Question		
What can be said about th	ne image of $\det_{\mathcal{O}}\circ ho_{\ell^{\infty}}: 0$	$Gal(\overline{\mathbb{Q}}/\mathbb{Q}) o \mathcal{O}_\ell^{ imes}$?

A determinant 00	A review 000000	Problem 000●0000
Question		
What can be said about the	image of $\det_{\mathcal{O}} \circ \rho_{\ell^{\infty}}$:	$Gal(\overline{\mathbb{Q}}/\mathbb{Q}) o \mathcal{O}_{\ell}^{ imes}$?

• the "natural candidate" for the image:

$$\{d\in \mathcal{O}_\ell^ imes: d\cdot \overline{d}\in 1+\ell\cdot (r-1)\mathbb{Z}_\ell\}$$

A determinant 00	A review 000000	Problem 000●0000
Question		
What can be said about	the image of det $_{\mathcal{O}} \circ ho_{\ell^{\infty}}$: Gal($\overline{\mathbb{Q}}/\mathbb{Q})^{ab} o \mathcal{O}_{\ell}^{ imes}$?

• the "natural candidate" for the image:

$$\{d \in \mathcal{O}_{\ell}^{ imes} : d \cdot \overline{d} \in 1 + \ell \cdot (r-1)\mathbb{Z}_{\ell}\}$$

- class field theory:
 - $Gal(\overline{\mathbb{Q}}/\mathbb{Q})^{ab} \approx \mathbb{I}_{\mathbb{Q}}/\mathbb{Q}^{\times}$, where $\mathbb{I}_{\mathbb{Q}} := \prod_{p \leq \infty}' \mathbb{Q}_{p}^{\times}$,
 - det $_{\mathcal{O}} \circ \rho_{\ell^{\infty}}$ comes from the Hecke character

$$\chi: \mathbb{I}_{\mathbb{Q}}/\mathbb{Q}^{\times} \to \mathbb{Q}(\zeta_{\ell})^{\times},$$
A determinant 00	A review 000000	Problem 000●0000
Question		
What can be said about the image of det $_{\mathcal{O}}\circ ho_{\ell^{\infty}}$: $Gal(\overline{\mathbb{Q}}/\mathbb{Q}(m{\zeta}_{\ell}))^{ab}$ –		

• the "natural candidate" for the image:

$$\{d \in \mathcal{O}_{\ell}^{ imes} : d \cdot \overline{d} \in 1 + \ell \cdot (r-1)\mathbb{Z}_{\ell}\}$$

- class field theory:
 - $Gal(\overline{\mathbb{Q}}/\mathbb{Q}(\zeta_{\ell})) \approx \mathbb{I}_{\mathbb{Q}(\zeta_{\ell})}/\mathbb{Q}(\zeta_{\ell})^{\times}$, where $\mathbb{I}_{\mathbb{Q}(\zeta_{\ell})} := \prod_{\mathfrak{p} \leq \infty}' \mathbb{Q}(\zeta_{\ell})_{\mathfrak{p}}^{\times}$,
 - det $_{\mathcal{O}} \circ \rho_{\ell^{\infty}}$ comes from the Hecke character

$$\chi: \mathbb{I}_{\mathbb{Q}(\zeta_{\ell})}/\mathbb{Q}(\zeta_{\ell})^{\times} \to \mathbb{Q}(\zeta_{\ell})^{\times},$$

A determinant A review Probl bo 000000 0000	em 00000
Question	
What can be said about the image of det $_{\mathcal{O}}\circ ho_{\ell^{\infty}}:Gal(\overline{\mathbb{Q}}/\mathbb{Q}(\zeta_{\ell}))^{ab} o\mathcal{O}_{\ell^{\infty}}$	$_{\ell}^{\times}?$

• the "natural candidate" for the image:

$$\{d \in \mathcal{O}_{\ell}^{ imes} : d \cdot \overline{d} \in 1 + \ell \cdot (r-1)\mathbb{Z}_{\ell}\}$$

- class field theory:
 - $Gal(\overline{\mathbb{Q}}/\mathbb{Q}(\zeta_{\ell})) \approx \mathbb{I}_{\mathbb{Q}(\zeta_{\ell})}/\mathbb{Q}(\zeta_{\ell})^{\times}$, where $\mathbb{I}_{\mathbb{Q}(\zeta_{\ell})} := \prod_{\mathfrak{p} \leq \infty}' \mathbb{Q}(\zeta_{\ell})_{\mathfrak{p}}^{\times}$,
 - det $_{\mathcal{O}} \circ \rho_{\ell^{\infty}}$ comes from the Hecke character

$$\chi: \mathbb{I}_{\mathbb{Q}(\boldsymbol{\zeta}_{\ell})}/\mathbb{Q}(\boldsymbol{\zeta}_{\ell})^{\times} \to \mathbb{Q}(\boldsymbol{\zeta}_{\ell})^{\times},$$

 the "infinity type" χ is determined by μ_ℓ ⊂ H⁰(Ω_C), and equal to:

$$\prod_{j=1}^{\ell-1} \sigma_j^{\lfloor \frac{r \cdot j}{\ell}}$$

where
$$\sigma_j(\zeta_\ell) := \zeta_\ell^j$$

A determinant 00	A review 000000	Problem 0000●000
Question		
What can be said about th	e image of $\det_{\mathcal{O}}\circ ho_{\ell^{\infty}}$: Ga	$\operatorname{al}(\overline{\mathbb{Q}}/\mathbb{Q}(\zeta_{\ell}))^{ab} o \mathcal{O}_{\ell}^{ imes}?$

A determinant 00	A review 000000	Problem 0000€000
Question		
What can be said abou	t the image of det ${}_{\mathcal{O}} \circ ho_{\ell^{\infty}}$: Gal($\overline{\mathbb{Q}}$	$(\mathbb{Q}(\zeta_{\ell}))^{ab} \to \mathcal{O}_{\ell}^{\times}?$

• "linear algebra":

det $_{\mathcal{O}} \circ \rho_{\ell^{\infty}}$ has a finite index in the "natural candidate" iff det $M_{\ell,r} \neq 0$.

A determinant 00	A review 000000	Problem 0000€000
Question		
What can be said about	the image of det $_{\mathcal{O}} \circ \rho_{\ell^{\infty}}$: Gal($\overline{\mathbb{Q}}$	$\overline{\mathbb{Q}}/\mathbb{Q}(\zeta_{\ell}))^{ab} \to \mathcal{O}_{\ell}^{\times}?$

• "linear algebra":

 $\det_{\mathcal{O}} \circ \rho_{\ell^{\infty}}$ has a finite index in the "natural candidate" iff $\det M_{\ell,r} \neq 0$.

• Hirabayashi formula for the determinant of $M_{\ell,r}$ (Demjanenko, '98)

$$\det M_{\ell,r} = \frac{(-1)^{\frac{\ell-1}{2}} \cdot h_{\ell}^{-}}{2\ell} \cdot (r^{r_{\ell}} - 1)^{\frac{\ell-1}{2r_{\ell}}},$$

where:

- h_{ℓ}^{-} is the relative class number of $\mathbb{Q}(\zeta_{\ell})$,
- r_{ℓ} is the multiplicative order of $r \mod \ell$.

A determinant 00	A review 000000	Problem 0000●000
Question		
What can be said about	the image of det $_{\mathcal{O}}\circ ho_{\ell^{\infty}}$: Gal($\overline{\mathbb{Q}}/\mathbb{Q}(\zeta_{\ell}))^{ab} \to \mathcal{O}_{\ell}^{\times}?$

• "linear algebra":

 $\det_{\mathcal{O}} \circ \rho_{\ell^{\infty}}$ has a finite index in the "natural candidate" iff $\det M_{\ell,r} \neq 0$.

• Hirabayashi formula for the determinant of $M_{\ell,r}$ (Demjanenko, '98)

$$\det M_{\ell,r} = \frac{(-1)^{\frac{\ell-1}{2}} \cdot h_{\ell}^{-}}{2\ell} \cdot (r^{r_{\ell}} - 1)^{\frac{\ell-1}{2r_{\ell}}},$$

where:

- h_{ℓ}^{-} is the relative class number of $\mathbb{Q}(\zeta_{\ell})$,
- r_{ℓ} is the multiplicative order of $r \mod \ell$.

Corollary (JG)

Under the assumptions of the Theorem, the MT conjecture (and Hodge and Tate's) holds for Jac(C)!

A determinant 00	A review 000000	Problem 00000●00

About the proof

- - a lifting result:

(Serre, ...) if $G \subset {\sf Gl}_r(\mathbb{Z}_\ell)$ is a closed subgroup and

 $G \pmod{\ell} = \mathrm{Gl}_r(\mathbb{Z}/\ell),$

then $G = \operatorname{Gl}_r(\mathbb{Z}_\ell)$.

 (JG) if $G \subset \mathrm{GU}_r(\mathcal{O}_\ell)$ is a closed subgroup and

 $G \pmod{\ell} = \operatorname{GU}_r(\mathcal{O}_{\ell}/\ell),$

then $G = \operatorname{GU}_r(\mathcal{O}_\ell)$.

 (JG) if $G \subset \mathrm{GU}_r(\mathcal{O}_\ell)$ is a closed subgroup and

 $G \pmod{\lambda} = \operatorname{GU}_r(\mathcal{O}_\ell/\lambda),$

to $G = \operatorname{GU}_r(\mathcal{O}_\ell)$.

 (JG) if $G \subset \mathrm{GU}_r(\mathcal{O}_\ell)$ is a closed subgroup and

$$G \pmod{\lambda^2} = \operatorname{GU}_r(\mathcal{O}_\ell/\lambda^2),$$

to $G = \operatorname{GU}_r(\mathcal{O}_\ell)$.

 (JG) if $G \subset \mathrm{GU}_r(\mathcal{O}_\ell)$ is a closed subgroup and

$$G \pmod{\lambda^2} = \operatorname{GU}_r(\mathcal{O}_\ell/\lambda^2),$$

to $G = \operatorname{GU}_r(\mathcal{O}_\ell)$.

• "descent theory": the description of $\mathbb{Q}(\operatorname{Jac}(C)[\lambda^2])$, i.e.

 $\mathbb{Q}(\zeta_{\ell},\mathsf{Jac}(C)[\lambda^{2}])=\mathbb{Q}(\zeta_{\ell},\alpha_{1},\ldots,\alpha_{r},\sqrt[\ell]{\alpha_{i}-\alpha_{j}}:i\neq j),$

where $\alpha_1, \ldots, \alpha_r$ – roots of f.

Thank you for your attention!

Other remarks

00	ninant	A review 000000	0000000
Oth	er remarks		
•	Hodge group (the special Mun	nford–Tate group):	

 $\textit{U}(\textit{H}_1(\textit{Jac}(\textit{C}),\mathbb{Q}),\Psi)$

 $U(H_1(\operatorname{Jac}(C), \mathbb{Q}), \Psi)$

 \bullet from the proof of the MT conjecture in this case it follows that

 $\operatorname{End}(\operatorname{Jac}(C)) = \mathbb{Z}[\zeta_{\ell}],$

• Hodge group (the special Mumford-Tate group):

 $\textit{U}(\textit{H}_1(\textit{Jac}(\textit{C}),\mathbb{Q}),\Psi)$

• from the proof of the MT conjecture in this case it follows that

$$\operatorname{End}(\operatorname{Jac}(C)) = \mathbb{Z}[\zeta_{\ell}],$$

• Hodge conjecture:

Theorem (Ribet)

If $E := \text{End}(\text{Jac}(C)) \otimes \mathbb{Q}$ is a commutative field and

 $MT(\operatorname{Jac}(C)) = U(H_1(\operatorname{Jac}(C), \mathbb{Q}), \Psi),$

then Jac(C) satisfies criterion (1,1) (i.e. all classes Hodge's are derived from divisors). In particular, it satisfies the Hodge conjecture!