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Local torsion problem

Conjecture (folklore)

Suppose that E/Q is an elliptic curve without CM.
Then for almost all primes p:

E (Qp)[p] = 0.
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p-degree conjecture

Definition

p-degree of an elliptic curve E/Q:

dp(E ) = min{[L : Qp] : E (L)[p] 6= 0}

A more general conjecture:

Conjecture (David & Weston, 2008)

If E/Q is an elliptic curve and EndE = Z, then:

lim
p→∞

dp(E ) =∞.

Motivation: the deformation theory of Galois representations.
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p-degree of elliptic curves with CM

What happens for elliptic curves with CM?

Theorem (J.G., 2018)

Let E : y2 = x3 − x . Then for any prime p 6= 2, 3:

dp(E ) =

{
p2 − 1, for p ≡ 3 (mod 4),

ordp (2s) , for p ≡ 1 (mod 4),

where s is defined for p ≡ 1 (mod 4) by p = s2 + t2 and

2 - s, s + t ≡ 1 (mod 4).

Original proof: main theorem of complex multiplication.
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p-degree of elliptic curves with CM

Corollary (J.G., 2018)

For
E : y2 = x3 − x

we have
dp(E ) = 8

if and only if p is of the form s2k+1 + s2k , where:

s0 = 0, s1 = 1, sk+2 = 4sk+1 − sk .

Remark

(s2k+1 + s2k )
100 000
k=1 is a prime iff

k ∈ {1, 2, 3, 4, 5, 131, 200, 296, 350, 519, 704, 950, 5598,

6683, 7445, 8775, 8786, 11565, 12483}.
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Both parts of the formula

dp(E ) =

{
p2 − 1, for p ≡ 3 (mod 4),

ordp (2s) , for p ≡ 1 (mod 4),

(for E : y2 = x3 − x)

may be generalized!
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p-degree of supersingular elliptic
curves

Theorem (J.G., 2018)

If E/Qp has good supersingular reduction then

dp(E ) = p2 − 1.

Proof: study of the formal group law of E ⇒ for any P ∈ E [p]:

e(Qp(P)/Qp) = p2 − 1.

By Elkies’ results:

Corollary

For any elliptic curve E/Q:

lim sup
p→∞

dp(E ) =∞.
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Canonical lifts

Definition

Canonical lift of an ordinary elliptic curve E/Fq:

the only lift E/W (Fq) of E with CM.

Theorem (Gross; David & Weston; Garnek)

The following conditions are „almost equivalent”:

(1) dp(E ) < p − 1,

(2) EFp is ordinary and EZ/p2 is a canonical lift of EFp ,

(3) E (Qun
p )[p] 6= 0,

(4) EFp is ordinary and dp(E ) = ordp ap(E ).

Precisely, ”almost equivalent” =

(1)⇒ (2), (2)⇔ (3), (3)⇒ (4).
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Open problems

Question

What is the behaviour of dp(E ) for p →∞ for other elliptic
curves E/Q?

Question

How often is an elliptic curve E/Q the canonical lift modp2 of
its reduction modp?

What about abelian varieties?

Question

Fix a Jacobian A/Q. How often is the canonical lift of
A mod p a Jacobian modp2?
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Class numbers of abelian varieties

As a by-product...

A/Q – an abelian variety of dimension d ,

r – rank of A(Q) over EndQ(A),

p – a fixed prime number,

Kn := Q(A[pn]) – pnth division field of A

Question

How to estimate the class number of Kn?
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Theorem (J.G., 2018)

If either of the following conditions holds:

r > d ,

r ­ 1, A has good reduction at p and AFp [p] 6= 0,

then for some explicit C = C (A, p) > 0, D = D(A, p) > 0:

#Cl(Kn) ­ pCn−D .

Idea of the proof:

investigate the Kummer extension of Q(A[pn]),

switch to local extension to give a bound on inertia groups.
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Thank you for
your attention!
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