> Jędrzej Garnek

LOCAL TORSION

CM CURVES

SUPERSINGULA ELLIPTIC CURVES

Open problems

CLASS NUMBERS O ABELIAN VARIETIES

LOCAL TORSION OF ELLIPTIC CURVES

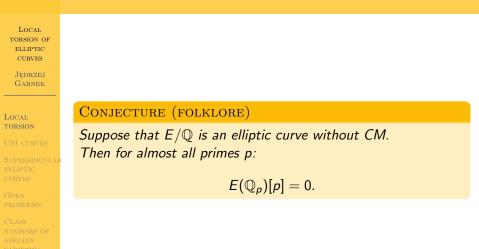
Jędrzej Garnek

Adam Mickiewicz University, Poznan

Torsion groups and Galois representations of elliptic curves 25.06.2018

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ●

LOCAL TORSION PROBLEM



p-DEGREE CONJECTURE

Local torsion of elliptic curves

> Jędrzej Garnek

LOCAL TORSION

CM CURVES

SUPERSINGULA ELLIPTIC CURVES

Open problems

CLASS NUMBERS O ABELIAN VARIETIES

DEFINITION

p-degree of an elliptic curve E/\mathbb{Q} :

 $d_p(E) = \min\{[L:\mathbb{Q}_p]: E(L)[p] \neq 0\}$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ●

p-DEGREE CONJECTURE

Local Torsion of Elliptic Curves

> Jędrzej Garnek

LOCAL TORSION

CM CURVES

Supersingula Elliptic Curves

Open problems

CLASS NUMBERS O ABELIAN VARIETIES

DEFINITION

p-degree of an elliptic curve E/\mathbb{Q} :

 $d_p(E) = \min\{[L:\mathbb{Q}_p]: E(L)[p] \neq 0\}$

A more general conjecture:

CONJECTURE (DAVID & WESTON, 2008)

If E/\mathbb{Q} is an elliptic curve and End $E = \mathbb{Z}$, then:

 $\lim_{p\to\infty}d_p(E)=\infty.$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

p-DEGREE CONJECTURE

Local Torsion of Elliptic Curves

> Jędrzej Garnek

LOCAL TORSION

CM CURVES

SUPERSINGULA ELLIPTIC CURVES

Open problems

CLASS NUMBERS O ABELIAN VARIETIES DEFINITION

p-degree of an elliptic curve E/\mathbb{Q} :

 $d_p(E) = \min\{[L:\mathbb{Q}_p]: E(L)[p] \neq 0\}$

A more general conjecture:

CONJECTURE (DAVID & WESTON, 2008)

If E/\mathbb{Q} is an elliptic curve and End $E = \mathbb{Z}$, then:

 $\lim_{p\to\infty}d_p(E)=\infty.$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ●

Motivation: the deformation theory of Galois representations.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ - つへ⊙

Local torsion of elliptic curves

> Jędrzej Garnek

LOCAL TORSION

CM CURVES

SUPERSINGULA ELLIPTIC CURVES

Open problems

CLASS NUMBERS C ABELIAN VARIETIES What happens for elliptic curves with CM?

Local torsion of elliptic curves

> Jędrzej Garnek

LOCAL TORSION

CM CURVES

Supersingul elliptic curves

Open problems

CLASS NUMBERS C ABELIAN VARIETIES What happens for elliptic curves with CM?

THEOREM (J.G., 2018)

Let $E: y^2 = x^3 - x$. Then for any prime $p \neq 2, 3$:

▲□▶▲□▶▲≡▶▲≡▶ = ● ●

$$d_p(E) =$$

Local torsion of elliptic curves

> Jędrzej Garnek

LOCAL TORSION

CM CURVES

Supersingul Elliptic Curves

Open problems

CLASS NUMBERS C ABELIAN VARIETIES What happens for elliptic curves with CM?

THEOREM (J.G., 2018)

Let $E: y^2 = x^3 - x$. Then for any prime $p \neq 2, 3$:

$$d_p(E) = \begin{cases} p^2 - 1, & \text{for } p \equiv 3 \pmod{4}, \\ \end{cases}$$

▲□▶▲□▶▲≡▶▲≡▶ = ● ●

Local torsion of elliptic curves

> Jędrzej Garnek

LOCAL TORSION

CM CURVES

Supersingul Elliptic Curves

Open problems

CLASS NUMBERS C ABELIAN VARIETIES What happens for elliptic curves with CM?

THEOREM (J.G., 2018)

Let $E: y^2 = x^3 - x$. Then for any prime $p \neq 2, 3$:

$$d_p(E) = \begin{cases} p^2 - 1, & \text{for } p \equiv 3 \pmod{4}, \\ \operatorname{ord}_p(2s), & \text{for } p \equiv 1 \pmod{4}, \end{cases}$$

▲□▶▲□▶▲≡▶▲≡▶ = ● ●

Local Torsion of Elliptic Curves

> Jędrzej Garnek

LOCAL TORSION

CM CURVES

Supersingul Elliptic Curves

Open problems

CLASS NUMBERS O ABELIAN VARIETIES What happens for elliptic curves with CM?

THEOREM (J.G., 2018)

Let $E: y^2 = x^3 - x$. Then for any prime $p \neq 2, 3$:

$$d_p(E) = \begin{cases} p^2 - 1, & \text{for } p \equiv 3 \pmod{4}, \\ \operatorname{ord}_p(2s), & \text{for } p \equiv 1 \pmod{4}, \end{cases}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ - つへ⊙

where s is defined for $p \equiv 1 \pmod{4}$ by $p = s^2 + t^2$

Local Torsion of Elliptic Curves

> Jędrzej Garnek

LOCAL TORSION

CM CURVES

SUPERSINGUL# ELLIPTIC CURVES

Open problems

CLASS NUMBERS O ABELIAN VARIETIES What happens for elliptic curves with CM?

THEOREM (J.G., 2018)

Let $E: y^2 = x^3 - x$. Then for any prime $p \neq 2, 3$:

$$d_p(E) = \begin{cases} p^2 - 1, & \text{for } p \equiv 3 \pmod{4}, \\ \operatorname{ord}_p(2s), & \text{for } p \equiv 1 \pmod{4}, \end{cases}$$

where s is defined for $p \equiv 1 \pmod{4}$ by $p = s^2 + t^2$ and

 $2 \nmid s, \qquad s+t \equiv 1 \pmod{4}.$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ●

Local Torsion of Elliptic Curves

> Jędrzej Garnek

LOCAL TORSION

CM CURVES

SUPERSINGULA ELLIPTIC CURVES

Open problems

CLASS NUMBERS OF ABELIAN VARIETIES What happens for elliptic curves with CM?

THEOREM (J.G., 2018)

Let $E: y^2 = x^3 - x$. Then for any prime $p \neq 2, 3$:

$$d_p(E) = \begin{cases} p^2 - 1, & \text{for } p \equiv 3 \pmod{4}, \\ \operatorname{ord}_p(2s), & \text{for } p \equiv 1 \pmod{4}, \end{cases}$$

where s is defined for $p \equiv 1 \pmod{4}$ by $p = s^2 + t^2$ and

 $2 \nmid s, \qquad s+t \equiv 1 \pmod{4}.$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ●

Original proof: main theorem of complex multiplication.

$\ensuremath{\textit{p}}\xspace$ of elliptic curves with CM

Local torsion of elliptic	Corollary (J.G., 2018)
CURVES	For
Jędrzej Garnek	$E: y^2 = x^3 - x$
CM CURVES	
Supersingular elliptic curves	
Open problems	
CLASS NUMBERS OF ABELIAN VARIETIES	

Local Torsion of Elliptic Curves

> Jędrzej Garnek

LOCAL TORSION

CM CURVES

Supersingul Elliptic Curves

Open problems

CLASS NUMBERS O ABELIAN VARIETIES

COROLLARY (J.G., 2018)

For

$$E: y^2 = x^3 - x$$

we have

 $d_p(E) = 8$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ●

Local Torsion of Elliptic Curves

Jędrzej Garnek

LOCAL TORSION

CM CURVES

SUPERSINGULA ELLIPTIC CURVES

Open problems

CLASS NUMBERS O ABELIAN VARIETIES

COROLLARY (J.G., 2018)

For

$$E: y^2 = x^3 - x$$

we have

$$d_p(E) = 8$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

if and only if p is of the form $s_{k+1}^2 + s_k^2$, where:

Local Torsion of Elliptic Curves

Jędrzej Garnek

LOCAL TORSION

CM CURVES

SUPERSINGULA ELLIPTIC CURVES

Open problems

CLASS NUMBERS O ABELIAN VARIETIES

COROLLARY (J.G., 2018)

For

$$E: y^2 = x^3 - x$$

we have

$$d_p(E)=8$$

if and only if p is of the form $s_{k+1}^2 + s_k^2$, where:

$$s_0 = 0, \quad s_1 = 1, \quad s_{k+2} = 4s_{k+1} - s_k.$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Local torsion of elliptic curves

> Jędrzej Garnek

LOCAL TORSION

CM CURVES

SUPERSINGULA ELLIPTIC CURVES

Open problems

CLASS NUMBERS OF ABELIAN VARIETIES

Corollary (J.G., 2018)

For

$$E: y^2 = x^3 - x$$

we have

$$d_p(E)=8$$

if and only if p is of the form $s_{k+1}^2 + s_k^2$, where:

$$s_0 = 0, \quad s_1 = 1, \quad s_{k+2} = 4s_{k+1} - s_k.$$

Remark

$$(s_{k+1}^2 + s_k^2)_{k=1}^{100\,000}$$
 is a prime iff

 $k \in \{1, 2, 3, 4, 5, 131, 200, 296, 350, 519, 704, 950, 5598,$

6683, 7445, 8775, 8786, 11565, 12483 }.

Local torsion of elliptic curves

Jędrzej Garnek

LOCAL TORSION

CM CURVES

SUPERSINGULAR ELLIPTIC CURVES

Open Problems

CLASS NUMBERS O ABELIAN VARIETIES

$$d_p(E) = \begin{cases} p^2 - 1, & \text{for } p \equiv 3 \pmod{4}, \\ \text{ord}_p(2s), & \text{for } p \equiv 1 \pmod{4}, \end{cases}$$

$$(\text{for } E: y^2 = x^3 - x)$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Jędrzej Garnek

CM CURVES

Both parts of the formula

 $d_p(E) = \begin{cases} p^2 - 1, & \text{for } p \equiv 3 \pmod{4}, \\ \text{ord}_p(2s), & \text{for } p \equiv 1 \pmod{4}, \end{cases}$ $(\text{for } E: y^2 = x^3 - x)$

may be generalized!

CLASS NUMBERS O ABELIAN VARIETIES

- イロト イロト イミト イミト 三日 - のへぐ

p-DEGREE OF SUPERSINGULAR ELLIPTIC CURVES

Local Torsion of Elliptic Curves

> Jędrzej Garnek

LOCAL TORSION

CM CURVES

SUPERSINGULAR ELLIPTIC CURVES

Open problems

CLASS NUMBERS O ABELIAN VARIETIES

THEOREM (J.G., 2018)

If E/\mathbb{Q}_p has good supersingular reduction then

$$d_p(E)=p^2-1.$$

Proof: study of the formal group law of $E \Rightarrow$ for any $P \in E[p]$:

$$e(\mathbb{Q}_p(P)/\mathbb{Q}_p) = p^2 - 1.$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

p-DEGREE OF SUPERSINGULAR ELLIPTIC CURVES

Local Torsion of Elliptic Curves

> Jędrzej Garnek

LOCAL TORSION

CM CURVES

SUPERSINGULAR ELLIPTIC CURVES

Open problems

Class NUMBERS OF ABELIAN VARIETIES

THEOREM (J.G., 2018)

If E/\mathbb{Q}_p has good supersingular reduction then

$$d_p(E)=p^2-1.$$

Proof: study of the formal group law of $E \Rightarrow$ for any $P \in E[p]$:

$$e(\mathbb{Q}_p(P)/\mathbb{Q}_p)=p^2-1.$$

By Elkies' results:

COROLLARY

For any elliptic curve E/\mathbb{Q} :

 $\limsup_{p\to\infty} d_p(E) = \infty.$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Local Torsion of Elliptic Curves

> Jędrzej Garnek

LOCAL TORSION

CM CURVES

SUPERSINGULAR ELLIPTIC CURVES

Open Problems

CLASS NUMBERS O ABELIAN VARIETIES

DEFINITION

Canonical lift of an ordinary elliptic curve E/\mathbb{F}_q :

the only lift $\mathbb{E}/\mathcal{W}(\mathbb{F}_q)$ of E with CM.

Local torsion of elliptic curves

Jędrzej Garnek

LOCAL TORSION

CM CURVES

Supersingular elliptic curves

Open problems

CLASS NUMBERS O ABELIAN VARIETIES

DEFINITION

Canonical lift of an ordinary elliptic curve E/\mathbb{F}_q :

the only lift $\mathbb{E}/W(\mathbb{F}_q)$ of E with CM.

THEOREM (GROSS; DAVID & WESTON; GARNEK)

The following conditions are "almost equivalent":

Local torsion of elliptic curves

Jędrzej Garnek

LOCAL TORSION

CM CURVES

Supersingular elliptic curves

Open problems

CLASS NUMBERS O ABELIAN VARIETIES

DEFINITION

Canonical lift of an ordinary elliptic curve E/\mathbb{F}_q :

the only lift $\mathbb{E}/W(\mathbb{F}_q)$ of E with CM.

THEOREM (GROSS; DAVID & WESTON; GARNEK)

The following conditions are "almost equivalent": (1) $d_p(E) ,$

Local torsion of elliptic curves

Jędrzej Garnek

LOCAL TORSION

CM CURVES

Supersingular Elliptic Curves

Open problems

Class NUMBERS O ABELIAN VARIETIES

DEFINITION

Canonical lift of an ordinary elliptic curve E/\mathbb{F}_q :

the only lift $\mathbb{E}/W(\mathbb{F}_q)$ of E with CM.

.

THEOREM (GROSS; DAVID & WESTON; GARNEK)

The following conditions are "almost equivalent": (1) $d_p(E) ,$ $(2) <math>E_{\mathbb{F}_p}$ is ordinary and $E_{\mathbb{Z}/p^2}$ is a canonical lift of $E_{\mathbb{F}_p}$,

Local torsion of elliptic curves

> Jędrzej Garnek

LOCAL TORSION

CM CURVES

Supersingular elliptic curves

Open problems

CLASS NUMBERS OF ABELIAN VARIETIES

DEFINITION

Canonical lift of an ordinary elliptic curve E/\mathbb{F}_q :

the only lift $\mathbb{E}/W(\mathbb{F}_q)$ of E with CM.

THEOREM (GROSS; DAVID & WESTON; GARNEK)

The following conditions are "almost equivalent":

- (1) $d_p(E) ,$
- (2) $E_{\mathbb{F}_p}$ is ordinary and $E_{\mathbb{Z}/p^2}$ is a canonical lift of $E_{\mathbb{F}_p}$,
- (3) $E(\mathbb{Q}_p^{un})[p] \neq 0$,

Local torsion of elliptic curves

Jędrzej Garnek

LOCAL TORSION

CM CURVES

Supersingular elliptic curves

Open problems

Class numbers of Abelian varieties

DEFINITION

Canonical lift of an ordinary elliptic curve E/\mathbb{F}_q :

the only lift $\mathbb{E}/W(\mathbb{F}_q)$ of E with CM.

THEOREM (GROSS; DAVID & WESTON; GARNEK)

The following conditions are "almost equivalent":

1)
$$d_p(E) ,$$

(2) $E_{\mathbb{F}_p}$ is ordinary and $E_{\mathbb{Z}/p^2}$ is a canonical lift of $E_{\mathbb{F}_p}$,

- (3) $E(\mathbb{Q}_p^{un})[p] \neq 0$,
- (4) $E_{\mathbb{F}_p}$ is ordinary and $d_p(E) = \operatorname{ord}_p a_p(E)$.

Local torsion of elliptic curves

> Jędrzej Garnek

LOCAL TORSION

CM CURVES

Supersingular elliptic curves

Open problems

Class numbers of Abelian varieties

DEFINITION

Canonical lift of an ordinary elliptic curve E/\mathbb{F}_q :

the only lift $\mathbb{E}/W(\mathbb{F}_q)$ of E with CM.

THEOREM (GROSS; DAVID & WESTON; GARNEK)

The following conditions are "almost equivalent":

1)
$$d_p(E) ,$$

 $(2)~{\it E}_{{\Bbb F}_p}$ is ordinary and ${\it E}_{{\Bbb Z}/p^2}$ is a canonical lift of ${\it E}_{{\Bbb F}_p},$

3)
$$E(\mathbb{Q}_p^{un})[p] \neq 0$$
,

(4) $E_{\mathbb{F}_p}$ is ordinary and $d_p(E) = \operatorname{ord}_p a_p(E)$.

Precisely, "almost equivalent" =

 $(1) \Rightarrow (2), (2) \Leftrightarrow (3), (3) \Rightarrow (4).$

Local torsion of elliptic curves

> Jędrzej Garnek

LOCAL TORSION

CM CURVES

SUPERSINGULA ELLIPTIC CURVES

Open problems

CLASS NUMBERS O ABELIAN VARIETIES

QUESTION

What is the behaviour of $d_p(E)$ for $p \to \infty$ for other elliptic curves E/\mathbb{Q} ?

Local Torsion of Elliptic Curves

> Jędrzej Garnek

LOCAL TORSION

CM CURVES

SUPERSINGULA ELLIPTIC CURVES

Open problems

CLASS NUMBERS O ABELIAN VARIETIES

QUESTION

What is the behaviour of $d_p(E)$ for $p \to \infty$ for other elliptic curves E/\mathbb{Q} ?

QUESTION

How often is an elliptic curve E/\mathbb{Q} the canonical lift $mod p^2$ of its reduction mod p?

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Local Torsion of Elliptic Curves

> Jędrzej Garnek

LOCAL TORSION

CM CURVES

Supersingula elliptic curves

Open problems

CLASS NUMBERS O ABELIAN VARIETIES

QUESTION

What is the behaviour of $d_p(E)$ for $p \to \infty$ for other elliptic curves E/\mathbb{Q} ?

QUESTION

How often is an elliptic curve E/\mathbb{Q} the canonical lift $\operatorname{mod} p^2$ of its reduction $\operatorname{mod} p$?

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

What about abelian varieties?

Local Torsion of Elliptic Curves

> Jędrzej Garnek

LOCAL TORSION

CM CURVES

Supersingulai elliptic curves

Open problems

CLASS NUMBERS OF ABELIAN VARIETIES

QUESTION

What is the behaviour of $d_p(E)$ for $p \to \infty$ for other elliptic curves E/\mathbb{Q} ?

QUESTION

How often is an elliptic curve E/\mathbb{Q} the canonical lift mod p^2 of its reduction mod p?

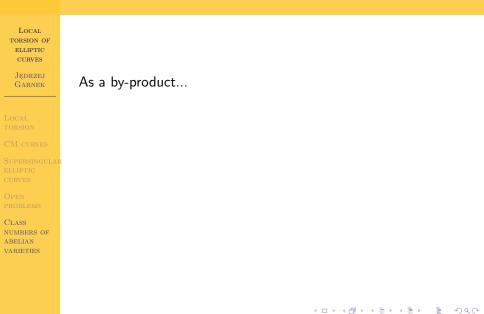
▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

What about abelian varieties?

QUESTION

Fix a Jacobian A/\mathbb{Q} . How often is the canonical lift of A mod p a Jacobian mod p^2 ?

CLASS NUMBERS OF ABELIAN VARIETIES



CLASS NUMBERS OF ABELIAN VARIETIES

Local Torsion of Elliptic Curves

> Jędrzej Garnek

LOCAL TORSION

CM CURVES

SUPERSINGULA ELLIPTIC CURVES

Open problems

CLASS NUMBERS OF ABELIAN VARIETIES As a by-product...

- A/\mathbb{Q} an abelian variety of dimension d,
- r rank of $A(\mathbb{Q})$ over $\operatorname{End}_{\mathbb{Q}}(A)$,
- p a fixed prime number,
- $K_n := \mathbb{Q}(A[p^n]) p^n$ th division field of A

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

CLASS NUMBERS OF ABELIAN VARIETIES

Jędrzej Garnek

LOCAL TORSION

CM CURVES

SUPERSINGULA ELLIPTIC CURVES

Open problems

CLASS NUMBERS OF ABELIAN VARIETIES As a by-product...

- A/\mathbb{Q} an abelian variety of dimension d,
- r rank of $A(\mathbb{Q})$ over $\operatorname{End}_{\mathbb{Q}}(A)$,
- p a fixed prime number,
- $K_n := \mathbb{Q}(A[p^n]) p^n$ th division field of A

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

QUESTION

How to estimate the class number of K_n ?

> Jędrzej Garnek

LOCAL TORSION

CM CURVES

Supersingulai Elliptic Curves

Open problems

CLASS NUMBERS OF ABELIAN VARIETIES

THEOREM (J.G., 2018)

If either of the following conditions holds:

• *r* > *d*,

• $r \ge 1$, A has good reduction at p and $A_{\mathbb{F}_p}[p] \neq 0$,

then for some explicit C = C(A, p) > 0, D = D(A, p) > 0:

 $\# \operatorname{Cl}(K_n) \ge p^{Cn-D}.$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ●

> Jędrzej Garnek

LOCAL TORSION

CM CURVES

Supersingulaf Elliptic Curves

Open problems

CLASS NUMBERS OF ABELIAN VARIETIES

THEOREM (J.G., 2018)

If either of the following conditions holds:

• *r* > *d*,

• $r \ge 1$, A has good reduction at p and $A_{\mathbb{F}_p}[p] \neq 0$,

then for some explicit C = C(A, p) > 0, D = D(A, p) > 0:

$$\# \operatorname{Cl}(K_n) \ge p^{Cn-D}$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Idea of the proof:

> Jędrzej Garnek

LOCAL TORSION

CM CURVES

Supersingular Elliptic Curves

Open problems

Class NUMBERS OF ABELIAN VARIETIES

THEOREM (J.G., 2018)

If either of the following conditions holds:

• *r* > *d*,

• $r \ge 1$, A has good reduction at p and $A_{\mathbb{F}_p}[p] \neq 0$,

then for some explicit C = C(A, p) > 0, D = D(A, p) > 0:

$$\# \operatorname{Cl}(K_n) \geqslant p^{Cn-D}$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Idea of the proof:

• investigate the Kummer extension of $\mathbb{Q}(A[p^n])$,

> Jędrzej Garnek

LOCAL TORSION

CM CURVES

Supersingular Elliptic Curves

Open problems

Class NUMBERS OF ABELIAN VARIETIES

THEOREM (J.G., 2018)

If either of the following conditions holds:

• *r* > *d*,

• $r \ge 1$, A has good reduction at p and $A_{\mathbb{F}_p}[p] \ne 0$,

then for some explicit C = C(A, p) > 0, D = D(A, p) > 0:

$$\# \operatorname{Cl}(K_n) \geqslant p^{Cn-D}$$

Idea of the proof:

- investigate the Kummer extension of $\mathbb{Q}(A[p^n])$,
- switch to local extension to give a bound on inertia groups.

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ●

BIBLIOGRAPHY:

Local torsion of elliptic curves

> Jędrzej Garnek

LOCAL TORSION

CM CURVES

Supersingul Elliptic Curves

Open problems

CLASS NUMBERS OF ABELIAN VARIETIES

J. Garnek.

On *p*-degree of elliptic curves International Journal of Number Theory, 2018.

J. Garnek.

On the class numbers of division fields of abelian varieties (preprint)

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Local torsion of elliptic curves

> Jędrzej Garnek

LOCAL TORSION

CM CURVES

Supersingul. Elliptic Curves

Open problems

CLASS NUMBERS OF ABELIAN VARIETIES

Thank you for your attention!

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @