PURITY THEOREM

JĘDRZEJ GARNEK

1. Problems

(1) Let $X \subset \mathbb{P}^n$ be a curve of degree d over \mathbb{F}_q (not necessarily smooth). Prove that:

$$|\#X(\mathbb{F}_q) - q| \le (d-1) \cdot (d-2) \cdot q^{1/2} + \frac{d(d-1)(d-2)}{2} + 1$$

Hints:

- (a) Let $\pi : Y \to X$ be the normalization of (the projective closure of) X. Find the relation between $\#X(\mathbb{F}_q)$ and $\#Y(\mathbb{F}_q)$. Use Weil estimates for Y.
- (b) Let $\phi : X_{\overline{k}} \to \mathbb{P}^2_{\overline{k}}$ be a projection with image C (degree d plane curve with at most double points) and $\psi = \phi \circ \pi_{\overline{k}}$. Show that $\sum_{x \in (X_{\overline{k}})_{sing}} \deg(\pi_{\overline{k}}^{-1}(x)) \leq \sum_{x \in C_{sing}} \deg(\psi^{-1}(x)).$
- (c) Estimate deg($\psi^{-1}(x)$) and show that $\#C_{sing} \leq \frac{(d-1)(d-2)}{2}$, using that $\psi_*\mathcal{O}_{Y_{\overline{k}}}/\mathcal{O}_C$ is a sheaf with a finite support.
- (2) Let V be an r-dimensional variety in \mathbb{P}^n .
 - (a) Show that the set

$$W := \{ (H_1, \dots, H_{r+1}) \in ((\mathbb{P}^n)^*)^{\times (r+1)} : \bigcap_i H_i \cap V \neq \emptyset \}$$

is of codimension 1 in $((\mathbb{P}^n)^*)^{\times (r+1)}$.

(Hint: consider the incidence variety $\{(H_1, \ldots, H_{r+1}, x) \in ((\mathbb{P}^n)^*)^{\times (r+1)} \times X : x \in \bigcap_i H_i\}$ – compute its dimension by projecting and compare it with the dimension of W)

(b) Show that W determines V.

(*Hint: give a criterion for* $x \in V$ *in terms of elements of* W)

(3) Show that for $f : \mathbb{A}^1(\mathbb{F}_{q^n}) \to \overline{\mathbb{Q}}_{\ell}$:

$$(FT_{\psi} \circ FT_{\psi^{-1}})f = q^n \cdot f.$$

- (4) Show that if we base change $\mathcal{L}_0(\psi)$ to \mathbb{F}_{q^n} , we get $\mathcal{L}_0(\psi \circ \operatorname{tr}_{\mathbb{F}_{q^n}}/\mathbb{F}_q)$.
- (5) Let $\wp : \mathbb{A}^1 \to \mathbb{A}^1$, $y \mapsto y^p y$ be the Artin–Schreier cover. Let also $\psi : \mathbb{F}_q \to \overline{\mathbb{Q}}_\ell$ be a non-trivial (additive) character and $\psi_x(y) := \psi(x \cdot y)$. Show that:

$$\wp_*(\overline{\mathbb{Q}}_\ell) = \bigoplus_{x \in \mathbb{F}_q} \mathcal{L}_0(\psi_x).$$

Email address: jgarnek@amu.edu.pl